Skip to main content

Deconvolution of cell types and states in spatial multiomics utilizing TACIT.

Publication ,  Journal Article
Huynh, KLA; Tyc, KM; Matuck, BF; Easter, QT; Pratapa, A; Kumar, NV; Pérez, P; Kulchar, RJ; Pranzatelli, TJF; de Souza, D; Weaver, TM; Qu, X ...
Published in: Nature communications
April 2025

Identifying cell types and states remains a time-consuming, error-prone challenge for spatial biology. While deep learning increasingly plays a role, it is difficult to generalize due to variability at the level of cells, neighborhoods, and niches in health and disease. To address this, we develop TACIT, an unsupervised algorithm for cell annotation using predefined signatures that operates without training data. TACIT uses unbiased thresholding to distinguish positive cells from background, focusing on relevant markers to identify ambiguous cells in multiomic assays. Using five datasets (5,000,000 cells; 51 cell types) from three niches (brain, intestine, gland), TACIT outperforms existing unsupervised methods in accuracy and scalability. Integrating TACIT-identified cell types reveals new phenotypes in two inflammatory gland diseases. Finally, using combined spatial transcriptomics and proteomics, we discover under- and overrepresented immune cell types and states in regions of interest, suggesting multimodality is essential for translating spatial biology to clinical applications.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Nature communications

DOI

EISSN

2041-1723

ISSN

2041-1723

Publication Date

April 2025

Volume

16

Issue

1

Start / End Page

3747

Related Subject Headings

  • Unsupervised Machine Learning
  • Transcriptome
  • Proteomics
  • Multiomics
  • Mice
  • Intestines
  • Humans
  • Gene Expression Profiling
  • Deep Learning
  • Brain
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Huynh, K. L. A., Tyc, K. M., Matuck, B. F., Easter, Q. T., Pratapa, A., Kumar, N. V., … Liu, J. (2025). Deconvolution of cell types and states in spatial multiomics utilizing TACIT. Nature Communications, 16(1), 3747. https://doi.org/10.1038/s41467-025-58874-4
Huynh, Khoa L. A., Katarzyna M. Tyc, Bruno F. Matuck, Quinn T. Easter, Aditya Pratapa, Nikhil V. Kumar, Paola Pérez, et al. “Deconvolution of cell types and states in spatial multiomics utilizing TACIT.Nature Communications 16, no. 1 (April 2025): 3747. https://doi.org/10.1038/s41467-025-58874-4.
Huynh KLA, Tyc KM, Matuck BF, Easter QT, Pratapa A, Kumar NV, et al. Deconvolution of cell types and states in spatial multiomics utilizing TACIT. Nature communications. 2025 Apr;16(1):3747.
Huynh, Khoa L. A., et al. “Deconvolution of cell types and states in spatial multiomics utilizing TACIT.Nature Communications, vol. 16, no. 1, Apr. 2025, p. 3747. Epmc, doi:10.1038/s41467-025-58874-4.
Huynh KLA, Tyc KM, Matuck BF, Easter QT, Pratapa A, Kumar NV, Pérez P, Kulchar RJ, Pranzatelli TJF, de Souza D, Weaver TM, Qu X, Soares Junior LAV, Dolhnokoff M, Kleiner DE, Hewitt SM, da Silva LFF, Rocha VG, Warner BM, Byrd KM, Liu J. Deconvolution of cell types and states in spatial multiomics utilizing TACIT. Nature communications. 2025 Apr;16(1):3747.

Published In

Nature communications

DOI

EISSN

2041-1723

ISSN

2041-1723

Publication Date

April 2025

Volume

16

Issue

1

Start / End Page

3747

Related Subject Headings

  • Unsupervised Machine Learning
  • Transcriptome
  • Proteomics
  • Multiomics
  • Mice
  • Intestines
  • Humans
  • Gene Expression Profiling
  • Deep Learning
  • Brain