Mobile Robotic Optical Coherence Tomography System for Ophthalmic Imaging in Clinical Environments.
Optical coherence tomography (OCT) is an indispensable imaging modality for the diagnosis and management of many common eye diseases. We previously presented a fixed-base robotic OCT system to enable automated imaging and alleviate the necessity for restricted patient posture required by traditional clinical OCT. To adapt our system to diverse clinic environments, we introduce a mobile robotic OCT system designed for imaging patients in diverse clinical configurations. Our system includes a robot arm, a vertical motorized lift, and a wheeled cart housing essential components for the entire system, and is equipped with real-time motion planning algorithms for head movement tracking and obstacle avoidance during imaging sessions. We validate the system's workspace through robot kinematics and clinical simulation, evaluate dynamic tracking accuracy in real world experiments, and demonstrate obstacle avoidance capability in both simulation and real world. These features will allow us to perform OCT imaging in real clinical settings in the near future.