A small cationic probe for accurate, punctate discovery of RNA tertiary structure.
RNA molecules fold into intricate three-dimensional tertiary structures that are central to their biological functions. Yet reliably discovering new motifs that form true tertiary interactions remains a major challenge. Here we show that RNA tertiary folding occasionally generates electronegative motifs that react selectively with the small, positively-charged probe trimethyloxonium (TMO). Sites with enhanced reactivity to TMO, compared with the neutral reagent dimethyl sulfate (DMS), are indicative of tertiary structure and define T-sites. These positions share a structural signature in which a reactive nucleobase is adjacent to non-bridging phosphate oxygens, creating localized regions of negative charge. T-sites consistently map to the cores of higher-order structural interactions and functional centers across diverse RNAs, including distinct states in conformational ensembles. In the 10,723-nt dengue virus genome, three strong T-sites were detected, each within a complex structure required for viral replication. Cation-based covalent chemistry enables high-confidence discovery and analysis of functional RNA tertiary motifs across long and complex RNAs, opening new opportunities for transcriptome-wide structural analysis.