Skip to main content

Harnessing artificial intelligence for predicting and managing postoperative pain: a narrative literature review.

Publication ,  Journal Article
Sajdeya, R; Narouze, S
Published in: Curr Opin Anaesthesiol
October 1, 2024

PURPOSE OF REVIEW: This review examines recent research on artificial intelligence focusing on machine learning (ML) models for predicting postoperative pain outcomes. We also identify technical, ethical, and practical hurdles that demand continued investigation and research. RECENT FINDINGS: Current ML models leverage diverse datasets, algorithmic techniques, and validation methods to identify predictive biomarkers, risk factors, and phenotypic signatures associated with increased acute and chronic postoperative pain and persistent opioid use. ML models demonstrate satisfactory performance to predict pain outcomes and their prognostic trajectories, identify modifiable risk factors and at-risk patients who benefit from targeted pain management strategies, and show promise in pain prevention applications. However, further evidence is needed to evaluate the reliability, generalizability, effectiveness, and safety of ML-driven approaches before their integration into perioperative pain management practices. SUMMARY: Artificial intelligence (AI) has the potential to enhance perioperative pain management by providing more accurate predictive models and personalized interventions. By leveraging ML algorithms, clinicians can better identify at-risk patients and tailor treatment strategies accordingly. However, successful implementation needs to address challenges in data quality, algorithmic complexity, and ethical and practical considerations. Future research should focus on validating AI-driven interventions in clinical practice and fostering interdisciplinary collaboration to advance perioperative care.

Duke Scholars

Published In

Curr Opin Anaesthesiol

DOI

EISSN

1473-6500

Publication Date

October 1, 2024

Volume

37

Issue

5

Start / End Page

604 / 615

Location

United States

Related Subject Headings

  • Risk Factors
  • Perioperative Care
  • Pain, Postoperative
  • Pain Management
  • Machine Learning
  • Humans
  • Artificial Intelligence
  • Anesthesiology
  • Analgesics, Opioid
  • Algorithms
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Sajdeya, R., & Narouze, S. (2024). Harnessing artificial intelligence for predicting and managing postoperative pain: a narrative literature review. Curr Opin Anaesthesiol, 37(5), 604–615. https://doi.org/10.1097/ACO.0000000000001408
Sajdeya, Ruba, and Samer Narouze. “Harnessing artificial intelligence for predicting and managing postoperative pain: a narrative literature review.Curr Opin Anaesthesiol 37, no. 5 (October 1, 2024): 604–15. https://doi.org/10.1097/ACO.0000000000001408.
Sajdeya, Ruba, and Samer Narouze. “Harnessing artificial intelligence for predicting and managing postoperative pain: a narrative literature review.Curr Opin Anaesthesiol, vol. 37, no. 5, Oct. 2024, pp. 604–15. Pubmed, doi:10.1097/ACO.0000000000001408.

Published In

Curr Opin Anaesthesiol

DOI

EISSN

1473-6500

Publication Date

October 1, 2024

Volume

37

Issue

5

Start / End Page

604 / 615

Location

United States

Related Subject Headings

  • Risk Factors
  • Perioperative Care
  • Pain, Postoperative
  • Pain Management
  • Machine Learning
  • Humans
  • Artificial Intelligence
  • Anesthesiology
  • Analgesics, Opioid
  • Algorithms