An empirical evaluation of the predictive mean matching method for imputing missing values
This article reports empirical explorations of how well the predictive mean matching method for imputing missing data works for an often problematic variable - income -when income is used as an explanatory variable in a substantive regression model. It is found that the performance of the predictive mean method varies considerably with the predictive power of the imputation regression model and the percentage of cases with missing data on income. In comparisons of single-value with multiple-imputation methods, it also is found that the amount of bias and the loss of precision associated with single-value methods is considerably less than that associated with a weak imputation model. Situations in which using imputed data can lead to seriously biased estimates of regression coefficients (and related statistics) and situations in which the bias is so minimal as to be nonproblematic are identified.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Social Sciences Methods
- 4905 Statistics
- 4410 Sociology
- 1608 Sociology
- 1117 Public Health and Health Services
- 0104 Statistics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Social Sciences Methods
- 4905 Statistics
- 4410 Sociology
- 1608 Sociology
- 1117 Public Health and Health Services
- 0104 Statistics