Skip to main content
Journal cover image

Asymmetric-echo, short TE, retrospectively gated MR imaging of the heart and pulmonary vessels.

Publication ,  Journal Article
Richardson, DB; MacFall, JR; Sostman, HD; Spritzer, CE
Published in: J Magn Reson Imaging
1994

Although retrospectively cardiac-gated (cine) magnetic resonance imaging has shown promise for large-vessel pulmonary vascular imaging, it has not been able to depict the peripheral pulmonary vasculature, where signal is dephased because of susceptibility and/or motion artifacts. The authors developed a cine pulse sequence that uses asymmetric echoes and radio-frequency envelopes to achieve reduced gradient moments and a short TE, thereby reducing signal losses due to disordered flow and susceptibility effects. The effects of TE (2.8-12 msec) and the degree of echo symmetry as measured by the echo symmetry fraction (ESF) (0.6-1.0) are considered in the pulmonary vasculature and the heart. In pulmonary vessels, the signal-to-noise ratio nearly doubled as TE was decreased from 12 to 2.8 msec, but there was only about a 15% difference as the ESF decreased from 1.0 to 0.6, consistent with T2* losses dominating gradient moment dephasing. At a TE of 2.8 msec, the sequence improves visualization of pulmonary vessels and may be helpful for diagnosing pulmonary emboli. In the heart, however, the contrast-to-noise ratio between blood and cardiac tissue decreased by 30% as TE decreased from 12 to 2.8 msec and was not affected by changes in ESF. Flow artifacts in the cardiac blood pool, including those that can aid in diagnosis (eg, signal loss due to "jet" flow), are much less pronounced when a small ESF and short TE are used, making this sequence less attractive for investigation of cardiac flow irregularities. The reduced flow artifacts in this case, however, permit excellent depiction of gross cardiac anatomy.

Duke Scholars

Published In

J Magn Reson Imaging

DOI

ISSN

1053-1807

Publication Date

1994

Volume

4

Issue

2

Start / End Page

131 / 137

Location

United States

Related Subject Headings

  • Pulmonary Veins
  • Pulmonary Artery
  • Nuclear Medicine & Medical Imaging
  • Motion Pictures
  • Magnetic Resonance Imaging
  • Lung
  • Image Enhancement
  • Humans
  • Heart
  • Coronary Vessels
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Richardson, D. B., MacFall, J. R., Sostman, H. D., & Spritzer, C. E. (1994). Asymmetric-echo, short TE, retrospectively gated MR imaging of the heart and pulmonary vessels. J Magn Reson Imaging, 4(2), 131–137. https://doi.org/10.1002/jmri.1880040205
Richardson, D. B., J. R. MacFall, H. D. Sostman, and C. E. Spritzer. “Asymmetric-echo, short TE, retrospectively gated MR imaging of the heart and pulmonary vessels.J Magn Reson Imaging 4, no. 2 (1994): 131–37. https://doi.org/10.1002/jmri.1880040205.
Richardson DB, MacFall JR, Sostman HD, Spritzer CE. Asymmetric-echo, short TE, retrospectively gated MR imaging of the heart and pulmonary vessels. J Magn Reson Imaging. 1994;4(2):131–7.
Richardson, D. B., et al. “Asymmetric-echo, short TE, retrospectively gated MR imaging of the heart and pulmonary vessels.J Magn Reson Imaging, vol. 4, no. 2, 1994, pp. 131–37. Pubmed, doi:10.1002/jmri.1880040205.
Richardson DB, MacFall JR, Sostman HD, Spritzer CE. Asymmetric-echo, short TE, retrospectively gated MR imaging of the heart and pulmonary vessels. J Magn Reson Imaging. 1994;4(2):131–137.
Journal cover image

Published In

J Magn Reson Imaging

DOI

ISSN

1053-1807

Publication Date

1994

Volume

4

Issue

2

Start / End Page

131 / 137

Location

United States

Related Subject Headings

  • Pulmonary Veins
  • Pulmonary Artery
  • Nuclear Medicine & Medical Imaging
  • Motion Pictures
  • Magnetic Resonance Imaging
  • Lung
  • Image Enhancement
  • Humans
  • Heart
  • Coronary Vessels