Tunneling current noise in thin gate oxides
We have examined fluctuations in the tunneling current of 3.5 nm SiO2 barriers for voltages in the direct tunneling regime. We find a 1/f power law for the spectral density of the fluctuations where f is the frequency. This 1/f noise can be attributed to fluctuations of a trap assisted tunneling current through the oxide that causes current noise but is not evident in the I-V curves. We suggest that this noise may be a more sensitive probe of trap assisted tunneling and degradation in thin oxides than other measures. At voltages above a threshold of 2.5 V, we observe the reversible onset of non-Gaussian current transients in the noise. The onset of these current transients can be related to a transition in the spacial uniformity of the tunneling current density that may result in eventual breakdown of the oxide. © 1996 American Institute of Physics.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Physics
- 51 Physical sciences
- 40 Engineering
- 10 Technology
- 09 Engineering
- 02 Physical Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Physics
- 51 Physical sciences
- 40 Engineering
- 10 Technology
- 09 Engineering
- 02 Physical Sciences