
MR imaging contrast enhancement based on intermolecular zero quantum coherences.
A new method for magnetic resonance imaging (MRI) based on the detection of relatively strong signal from intermolecular zero-quantum coherences (iZQCs) is reported. Such a signal would not be observable in the conventional framework of magnetic resonance; it originates in long-range dipolar couplings (10 micrometers to 1 millimeter) that are traditionally ignored. Unlike conventional MRI, where image contrast is based on variations in spin density and relaxation times (often with injected contrast agents), contrast with iZQC images comes from variations in the susceptibility over a distance dictated by gradient strength. Phantom and in vivo (rat brain) data confirm that iZQC images give contrast enhancement. This contrast might be useful in the detection of small tumors, in that susceptibility correlates with oxygen concentration and in functional MRI.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Rats
- Phantoms, Imaging
- Mathematics
- Magnetics
- Magnetic Resonance Imaging
- General Science & Technology
- Brain Neoplasms
- Brain Mapping
- Brain
- Animals
Citation

Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Rats
- Phantoms, Imaging
- Mathematics
- Magnetics
- Magnetic Resonance Imaging
- General Science & Technology
- Brain Neoplasms
- Brain Mapping
- Brain
- Animals