
Enhanced repair of a cisplatin-damaged reporter chloramphenicol-O-acetyltransferase gene and altered activities of DNA polymerases alpha and beta, and DNA ligase in cells of a human malignant glioma following in vivo cisplatin therapy.
Current evidence suggest an important role for increased repair of drug-induced DNA damage as one of the major mechanisms involved in tumor cell resistance to cis-DDP. In this study, we examined the DNA repair capacity and the activities of three DNA repair related proteins, namely, DNA polymerases alpha and beta, and total DNA ligase in cells of a malignant oligodendroglioma obtained from a patient before therapy and compared it with those of a specimen of the tumor acquired after the patient had failed cis-DDP therapy. DNA repair capacity was quantitated as the extent of reactivation of the chloramphenicol-O-acetyltransferase (CAT) gene in a eukaryotic expression vector that had been damaged and inactivated by prior treatment with cis-DDP and then transfected into the tumor cells. The extent of DNA-platinum adduct formation in the expression vector was determined by flameless atomic absorption spectrometry. The level of cis-DDP resistance of cells of the two tumors was determined with the capillary tumor stem cell assay. We observed a 2.8-fold increased capacity to repair Pt-DNA adducts and reactivate the CAT gene in cells of the tumor obtained after cis-DDP therapy, compared to cells of the untreated tumor. This was associated with increases of 9.4-fold and a 2.3-fold, respectively, in DNA polymerase beta and total DNA ligase activities in cells of the treated tumor. At 5 microM cis-DDP, there was a 5.9-fold increase in the in vitro cis-DDP resistance of post-therapy tumor cells relative to cells of the untreated tumor.(ABSTRACT TRUNCATED AT 250 WORDS)
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Transfection
- Humans
- Glioma
- Drug Resistance
- DNA-Directed DNA Polymerase
- DNA Repair
- DNA Polymerase II
- DNA Polymerase I
- DNA Ligases
- DNA Damage
Citation

Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Transfection
- Humans
- Glioma
- Drug Resistance
- DNA-Directed DNA Polymerase
- DNA Repair
- DNA Polymerase II
- DNA Polymerase I
- DNA Ligases
- DNA Damage