Skip to main content
Journal cover image

Pulmonary hemodynamic consequences of ECG-synchronized ventilation.

Publication ,  Journal Article
Purut, CM; Utsunomiya, H; Craig, DM; Smith, PK
Published in: J Surg Res
August 1993

The pulmonary hemodynamic consequences of ECG-synchronized jet ventilation were studied in an acute closed chest swine model (n = 11). Eight jet timing protocols were compared to conventional mechanical ventilation. Hearts were paced atrially at 120 beats per minute, and analog measurements of pulmonary arterial flow and pulmonary arterial, tracheal, pleural, left atrial, and femoral arterial pressure were digitized in real time at 200 Hz. Fourier analysis of pulmonary artery pressure and flow waveforms was employed to calculate mean and oscillatory right ventricular hydraulic power and pulmonary vascular input impedance. Measurements were taken at 0, 5, and 10 cm H2O of positive end-expiratory pressure (PEEP) during conventional respiration and synchronized ventilation modes. No difference was found in mean pulmonary pressure and flow between conventional and synchronized ventilation at any level of PEEP, regardless of the timing of the jet pulse relative to the cardiac cycle. A significant difference in mean tracheal pressure between conventional and jet ventilation could be found only in the absence of PEEP (3.8 +/- 0.5 vs 2.5 +/- 0.3 mm Hg, P < 0.05). In the absence of PEEP, total hydraulic power was significantly less with respect to conventional ventilation when the jet pulse trailed the QRS complex by 90 and 135 degrees. A significant decrease in the ratio of oscillatory-to-mean power versus conventional respiration was found when jet ventilation lagged the QRS by 135 degrees (0.115 +/- 0.015 vs 0.147 +/- 0.013). These differences did not persist when PEEP was added. Moreover, no significant difference in hemodynamic variables was found when the various jet timing protocols were compared to each other.(ABSTRACT TRUNCATED AT 250 WORDS)

Duke Scholars

Published In

J Surg Res

DOI

ISSN

0022-4804

Publication Date

August 1993

Volume

55

Issue

2

Start / End Page

162 / 167

Location

United States

Related Subject Headings

  • Trachea
  • Swine
  • Surgery
  • Respiration, Artificial
  • Pulmonary Artery
  • Pressure
  • Positive-Pressure Respiration
  • Mathematics
  • Lung
  • Hemodynamics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Purut, C. M., Utsunomiya, H., Craig, D. M., & Smith, P. K. (1993). Pulmonary hemodynamic consequences of ECG-synchronized ventilation. J Surg Res, 55(2), 162–167. https://doi.org/10.1006/jsre.1993.1124
Purut, C. M., H. Utsunomiya, D. M. Craig, and P. K. Smith. “Pulmonary hemodynamic consequences of ECG-synchronized ventilation.J Surg Res 55, no. 2 (August 1993): 162–67. https://doi.org/10.1006/jsre.1993.1124.
Purut CM, Utsunomiya H, Craig DM, Smith PK. Pulmonary hemodynamic consequences of ECG-synchronized ventilation. J Surg Res. 1993 Aug;55(2):162–7.
Purut, C. M., et al. “Pulmonary hemodynamic consequences of ECG-synchronized ventilation.J Surg Res, vol. 55, no. 2, Aug. 1993, pp. 162–67. Pubmed, doi:10.1006/jsre.1993.1124.
Purut CM, Utsunomiya H, Craig DM, Smith PK. Pulmonary hemodynamic consequences of ECG-synchronized ventilation. J Surg Res. 1993 Aug;55(2):162–167.
Journal cover image

Published In

J Surg Res

DOI

ISSN

0022-4804

Publication Date

August 1993

Volume

55

Issue

2

Start / End Page

162 / 167

Location

United States

Related Subject Headings

  • Trachea
  • Swine
  • Surgery
  • Respiration, Artificial
  • Pulmonary Artery
  • Pressure
  • Positive-Pressure Respiration
  • Mathematics
  • Lung
  • Hemodynamics