Bbeta-adrenergic receptor kinase-1 levels in catecholamine-induced myocardial hypertrophy: regulation by beta- but not alpha1-adrenergic stimulation.
Pressure overload ventricular hypertrophy is accompanied by dysfunctional beta-adrenergic receptor signaling due to increased levels of the beta-adrenergic receptor kinase-1, which phosphorylates and desensitizes beta-adrenergic receptors. In this study, we examined whether increased beta-adrenergic receptor kinase 1 expression is associated with myocardial hypertrophy induced by adrenergic stimulation. With use of implanted mini-osmotic pumps, we treated mice with isoproterenol, phenylephrine, or vehicle to distinguish between alpha1- and beta-adrenergic stimulation. Both treatments resulted in cardiac hypertrophy, but only isoproterenol induced significant increases in beta-adrenergic receptor kinase-1 protein levels and activity. Similarly, in isolated adult rat cardiac myocytes, 24 hours of isoproterenol stimulation resulted in a significant 2.8-fold increase in beta-adrenergic receptor kinase-1 protein levels, whereas 24 hours of phenylephrine treatment did not alter beta-adrenergic receptor kinase-1 expression. Our results indicate that increased beta-adrenergic receptor kinase-1 is not invariably associated with myocardial hypertrophy but apparently is controlled by the state of beta-adrenergic receptor activation.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- beta-Adrenergic Receptor Kinases
- Signal Transduction
- Receptors, Adrenergic, beta
- Receptors, Adrenergic, alpha-1
- Rats, Sprague-Dawley
- Rats
- Radioligand Assay
- Phenylephrine
- Organ Size
- Myocardium
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- beta-Adrenergic Receptor Kinases
- Signal Transduction
- Receptors, Adrenergic, beta
- Receptors, Adrenergic, alpha-1
- Rats, Sprague-Dawley
- Rats
- Radioligand Assay
- Phenylephrine
- Organ Size
- Myocardium