Relationships between a terrain-based hydrologic model and patch-scale vegetation patterns in an arctic tundra landscape
Implicit in the relationship between vegetation patterns and landforms is the influence of topography on the water regime at the patch scale. Hence, based on the numerous process-based studies linking plant structure and function to water in the arctic, we hypothesize that the general pattern of arctic landscapes can be explained by a mesotopographic variable such as water drainage. In this paper, we test this hypothesis by examining the spatial relationship between patterns of vegetation and the water regime in a small watershed in northern Alaska. Using gridded elevation data, we develop a model (T-HYDRO) to generate a 2-dimensional water flow field for the watershed and compare this to vegetation patterns as given by 1) a vegetation map developed from aerial photographs in conjunction with extensive field sampling; and 2) a normalized difference vegetation index (NDVI). Our results show that it is possible to account for about 43% of the spatial variance in NDVI, which supports our hypothesis. In spite of its limitations, the correspondence of patterns presented in this paper provides encouraging evidence that we can find simple approaches to stratify landscapes and that it is possible to overcome the frequently made assumption of spatial homogeneity in ecosystems modeling. © 1993 SPB Academic Publishing bv.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Ecology
- 41 Environmental sciences
- 37 Earth sciences
- 31 Biological sciences
- 06 Biological Sciences
- 05 Environmental Sciences
- 04 Earth Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Ecology
- 41 Environmental sciences
- 37 Earth sciences
- 31 Biological sciences
- 06 Biological Sciences
- 05 Environmental Sciences
- 04 Earth Sciences