Skip to main content

Centre families in two-dimensional complex holomorphic dynamical systems

Publication ,  Journal Article
Needham, DJ; McAllister, S
Published in: Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci. (UK)
1998

We consider a two-dimensional complex holomorphic dynamical system. In particular, we use the singular point theory of C.H. Briot and J.C. Bouquet to establish the existence of complex holomorphic invariant manifolds of the system in the neighbourhood of an equilibrium point with two purely imaginary eigenvalues. Consequently, this enables us to establish the existence of isochronous centre families in the neighbourhood of the equilibrium point. The results are exhibited by application to the complex Takens-Bogdanov system

Duke Scholars

Published In

Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci. (UK)

DOI

Publication Date

1998

Volume

454

Issue

1976

Start / End Page

2267 / 2278

Related Subject Headings

  • 51 Physical sciences
  • 49 Mathematical sciences
  • 40 Engineering
  • 09 Engineering
  • 02 Physical Sciences
  • 01 Mathematical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Needham, D. J., & McAllister, S. (1998). Centre families in two-dimensional complex holomorphic dynamical systems. Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci. (UK), 454(1976), 2267–2278. https://doi.org/10.1098/rspa.1998.0258
Needham, D. J., and S. McAllister. “Centre families in two-dimensional complex holomorphic dynamical systems.” Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci. (UK) 454, no. 1976 (1998): 2267–78. https://doi.org/10.1098/rspa.1998.0258.
Needham DJ, McAllister S. Centre families in two-dimensional complex holomorphic dynamical systems. Proc R Soc Lond A, Math Phys Eng Sci (UK). 1998;454(1976):2267–78.
Needham, D. J., and S. McAllister. “Centre families in two-dimensional complex holomorphic dynamical systems.” Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci. (UK), vol. 454, no. 1976, 1998, pp. 2267–78. Manual, doi:10.1098/rspa.1998.0258.
Needham DJ, McAllister S. Centre families in two-dimensional complex holomorphic dynamical systems. Proc R Soc Lond A, Math Phys Eng Sci (UK). 1998;454(1976):2267–2278.

Published In

Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci. (UK)

DOI

Publication Date

1998

Volume

454

Issue

1976

Start / End Page

2267 / 2278

Related Subject Headings

  • 51 Physical sciences
  • 49 Mathematical sciences
  • 40 Engineering
  • 09 Engineering
  • 02 Physical Sciences
  • 01 Mathematical Sciences