Eigenanalysis of unsteady flows about airfoils, cascades, and wings
A general technique for constructing reduced order models of unsteady aerodynamic flows about twodimensional isolated airfoils, cascades of airfoils, and three-dimensional wings is developed. The starting point is a time domain computational model of the unsteady small disturbance flow. For illustration purposes, we apply the technique to an unsteady incompressible vortex lattice model. The eigenmodes of the system, which may be thought of as aerodynamic states, are computed and subsequently used to construct computationally efficient, reduced order models of the unsteady flowfield. Only a handful of the most dominant eigenmodes are retained in the reduced order model. The effect of the remaining eigenmodes is included approximately using a static correction technique. An important advantage of the present method is that once the eigenmode information has been computed, reduced order models can be constructed for any number of arbitrary modes of airfoil motion very inexpensively. Numerical examples are presented that demonstrate the accuracy and computational efficiency of the present method. Finally, we show how the reduced order model may be incorporated into an aeroelastic flutter model. © 1994 American Institute of Aeronautics and Astronautics, Inc., All rights reserved.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Aerospace & Aeronautics
- 4012 Fluid mechanics and thermal engineering
- 4001 Aerospace engineering
- 0913 Mechanical Engineering
- 0905 Civil Engineering
- 0901 Aerospace Engineering
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Aerospace & Aeronautics
- 4012 Fluid mechanics and thermal engineering
- 4001 Aerospace engineering
- 0913 Mechanical Engineering
- 0905 Civil Engineering
- 0901 Aerospace Engineering