Nonlinear inviscid aerodynamic effects on transonic divergence, flutter, and limit-cycle oscillations
By the use of a state-of-the-art computational fluid dynamic (CFD) method to model nonlinear steady and unsteady transonic flows in conjunction with a linear structural model, an investigation is made into how nonlinear aerodynamics can effect the divergence, flutter, and limit-cycle oscillation (LCO) characteristics of a transonic airfoil configuration. A single-degree-of-freedom (DOF) model is studied for divergence, and one- and two-DOF models are studied for flutter and LCO. A harmonic balance method in conjunction with the CFD solver is used to determine the aerodynamics for finite amplitude unsteady excitations of a prescribed frequency. A procedure for determining the LCO solution is also presented. For the configuration investigated, nonlinear aerodynamic effects are found to produce a favorable transonic divergence trend and unstable and stable LCO solutions, respectively, for the one- and two-DOF flutter models.
Duke Scholars
Published In
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Aerospace & Aeronautics
- 4012 Fluid mechanics and thermal engineering
- 4001 Aerospace engineering
- 0913 Mechanical Engineering
- 0905 Civil Engineering
- 0901 Aerospace Engineering
Citation
Published In
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Aerospace & Aeronautics
- 4012 Fluid mechanics and thermal engineering
- 4001 Aerospace engineering
- 0913 Mechanical Engineering
- 0905 Civil Engineering
- 0901 Aerospace Engineering