Interferometric phase-based dual wavelength tomography
We describe our phase-sensitive interferometry technique implemented as phase dispersion microscopy (PDM)/optical tomography (PDOT). The technique is based on measuring the phase difference between fundamental and second harmonic low coherence light in a novel interferometer. We attain high sensitivity to subtle refractive index differences due to dispersion with a differential optical path sensitivity of 5 nm. Using PDM, we show that ballistic light in a turbid medium undergoes a phase velocity change that is dependent on scatterer size. We demonstrate that the microscopy technique performs better than a conventional phase contrast microscope in imaging dispersive and weakly scattering samples. The tomographic implementation of the technique (PDOT) can complement Optical Coherence Tomography (OCT) by providing phase information about the scanned object.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
Citation
Published In
DOI
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering