Determination of the Kinetic Coefficients of Silicon Self-Interstitials from Oxygen Precipitation/Front-Surface Stacking-Fault Growth Experiments
An oxygen precipitation/surface stacking-fault growth experiment has been carried out to determine the kinetic coefficients of silicon self-interstitials. In this experiment, silicon self-interstitials were injected by the precipitation of interstitial oxygen within the bulk of the silicon samples. The sample front surfaces were capped with oxide or nitride layers, and the concentration of self-interstitials at the capped surfaces were monitored by the growth or shrinkage of surface stacking faults. Experimental results have been analyzed using steady-state and transient models, based on the assumption that self-interstitials dominate the kinetic processes of intrinsic point defects. From these analyses, estimates for the diffusivity D1, the equilibrium concentration CI
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Energy
- 4016 Materials engineering
- 3406 Physical chemistry
- 0912 Materials Engineering
- 0306 Physical Chemistry (incl. Structural)
- 0303 Macromolecular and Materials Chemistry
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Energy
- 4016 Materials engineering
- 3406 Physical chemistry
- 0912 Materials Engineering
- 0306 Physical Chemistry (incl. Structural)
- 0303 Macromolecular and Materials Chemistry