Skip to main content

Performance evaluation of multilayer perceptrons in signal detection and classification.

Publication ,  Journal Article
Michalopoulou, ZH; Nolte, LW; Alexandrou, D
Published in: IEEE transactions on neural networks
January 1995

Multilayer perceptrons trained with the backpropagation algorithm are tested in detection and classification tasks and are compared to optimal algorithms resulting from likelihood ratio tests. The focus is on the problem of one of M orthogonal signals in a Gaussian noise environment, since both the Bayesian detector and classifier are known for this problem and can provide a measure for the performance evaluation of the neural networks. Two basic situations are considered: detection and classification. For the detection part, it was observed that for the signal-known-exactly case (M=1), the performance of the neural detector converges to the performance of the ideal Bayesian decision processor, while for a higher degree of uncertainty (i.e. for a larger M), the performance of the multilayer perceptron is inferior to that of the optimal detector. For the classification case, the probability of error of the neural network is comparable to the minimum Bayesian error, which can be numerically calculated. Adding noise during the training stage of the network does not affect the performance of the neural detector; however, there is an indication that the presence of noise in the learning process of the neural classifier results in a degraded classification performance.

Duke Scholars

Published In

IEEE transactions on neural networks

DOI

EISSN

1941-0093

ISSN

1045-9227

Publication Date

January 1995

Volume

6

Issue

2

Start / End Page

381 / 386

Related Subject Headings

  • Artificial Intelligence & Image Processing
  • 4602 Artificial intelligence
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Michalopoulou, Z. H., Nolte, L. W., & Alexandrou, D. (1995). Performance evaluation of multilayer perceptrons in signal detection and classification. IEEE Transactions on Neural Networks, 6(2), 381–386. https://doi.org/10.1109/72.363473
Michalopoulou, Z. H., L. W. Nolte, and D. Alexandrou. “Performance evaluation of multilayer perceptrons in signal detection and classification.IEEE Transactions on Neural Networks 6, no. 2 (January 1995): 381–86. https://doi.org/10.1109/72.363473.
Michalopoulou ZH, Nolte LW, Alexandrou D. Performance evaluation of multilayer perceptrons in signal detection and classification. IEEE transactions on neural networks. 1995 Jan;6(2):381–6.
Michalopoulou, Z. H., et al. “Performance evaluation of multilayer perceptrons in signal detection and classification.IEEE Transactions on Neural Networks, vol. 6, no. 2, Jan. 1995, pp. 381–86. Epmc, doi:10.1109/72.363473.
Michalopoulou ZH, Nolte LW, Alexandrou D. Performance evaluation of multilayer perceptrons in signal detection and classification. IEEE transactions on neural networks. 1995 Jan;6(2):381–386.

Published In

IEEE transactions on neural networks

DOI

EISSN

1941-0093

ISSN

1045-9227

Publication Date

January 1995

Volume

6

Issue

2

Start / End Page

381 / 386

Related Subject Headings

  • Artificial Intelligence & Image Processing
  • 4602 Artificial intelligence