Global X-ray emission during an isolated substorm - A case study
The polar ionospheric X-ray imaging experiment (PIXIE) and the UV imager (UVI) onboard the Polar satellite have provided the first simultaneous global scale views of the patterns of electron precipitation through imaging of the atmospheric X-ray bremsstrahlung and the auroral UV emissions. While the UV images in the Lyman-Birge-Hopfield-long band used in this study respond to the total electron energy flux which is usually dominated by low-energy electrons (<10 keV), the PIXIE images of X-ray bremsstrahlung above ~2.7 keV respond to electrons of energy above ~3 keV. Comparison of precipitation features seen by UVI and PIXIE provides information on essentially complementary energy ranges of the precipitating electrons. In this study an isolated substorm is examined using data from PIXIE, UVI, ground-based measurements, and in situ measurements from high- and low-altitude satellites to obtain information about the global characteristics during the event. Results from a statistical study of isolated substorms, which has reported a significant difference in the patterns of energetic electron precipitation compared to the less energetic precipitation are confirmed. A localized maximum of electron precipitation in the morning sector delayed with respect to substorm onset is clearly seen in the X-ray aurora, and the time delay of this morning precipitation relative to substorm onset strongly indicates that this intensification is caused by electrons injected in the midnight sector drifting into a region in the dawnside magnetosphere where some mechanism effectively scatter the electrons into the loss cone. In this study, we also present the results from two low-altitude satellite passes through the region of the localized maximum of X-ray emission in the morning sector. Measured X rays are compared with X-ray fluxes calculated from the electron spectral measurements. By fitting the electron spectra by a sum of two exponentials we obtain fairly good agreement between calculated and directly measured X-ray flux profiles. © Elsevier Science Ltd.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Meteorology & Atmospheric Sciences
- 5109 Space sciences
- 5101 Astronomical sciences
- 0401 Atmospheric Sciences
- 0201 Astronomical and Space Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Meteorology & Atmospheric Sciences
- 5109 Space sciences
- 5101 Astronomical sciences
- 0401 Atmospheric Sciences
- 0201 Astronomical and Space Sciences