Ionospheric D region remote sensing using VLF radio atmospherics
Lightning discharges radiate the bulk of their electromagnetic energy in the very low frequency (VLF, 3-30 kHz) and extremely low frequency (ELF, 3-3000 Hz) bands. This energy, contained in impulse-like signals called radio atmospherics or sferics, is guided for long distances by multiple reflections from the ground and lower ionosphere. This suggests that observed sferic waveforms radiated from lightning and received at long distances (>1000 km) from the source stroke contain information about the state of the ionosphere along the propagation path. The focus of this work is on the extraction of nighttime D region electron densities (in the altitude range of ∼70-95 km) from observed VLF sferics. In order to accurately interpret observed sferic characteristics, we develop a model of sferic propagation which is based on an existing frequency domain subionospheric VLF propagation code. The model shows that the spectral characteristics of VLF sferics depend primarily on the propagation path averaged ionospheric D region electron density profile, covering the range of electron densities from ∼ 100 to 103 cm-3. To infer the D region density from observed VLF sferics, we find the electron density profile that produces a modeled sferic spectrum that most closely matches an observed sferic spectrum. In most nighttime cases the quality of the agreement and the uncertainties involved allow the height of an exponentially varying electron density profile to be inferred with a precision of ∼0.2 km.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Meteorology & Atmospheric Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Meteorology & Atmospheric Sciences