Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform
An ideal on-site chemical/biochemical analysis system must be inexpensive, sensitive, fully automated and integrated, reliable, and compatible with a broad range of samples. The advent of digital microfluidic lab-on-a-chip (LoC) technology offers such a detection system due to the advantages in portability, reduction of the volumes of the sample and reagents, faster analysis times, increased automation, low power consumption, compatibility with mass manufacturing, and high throughput. We describe progress towards integrating sample collection onto a digital microfluidic LoC that is a component of a cascade impactor device. The sample collection is performed by impacting airborne particles directly onto the surface of the chip. After the collection phase, the surface of the chip is washed with a micro-droplet of solvent. The droplet will be digitally directed across the impaction surface, dissolving sample constituents. Because of the very small droplet volume used for extraction of the sample from a wide collection area, the resulting solution is relatively concentrated and the analytes can be detected after a very short sampling time (1 min) due to such pre-concentration. After the washing phase, the droplet is mixed with specific reagents that produce colored reaction products. The concentration of the analyte is quantitatively determined by measuring absorption at target wavelengths using a simple light emitting diode and photodiode setup. Specific applications include automatic measurements of major inorganic ions in aerosols, such as sulfate, nitrate and ammonium, with a time resolution of 1 min and a detection limit of 30 ng/m 3. We have already demonstrated the detection and quantification of nitroaromatic explosives without integrating the sample collection. Other applications being developed include airborne bioagent detection.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
Citation
Published In
DOI
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering