Modulation of phosphatidylinositol 3-kinase signaling reduces intimal hyperplasia in aortocoronary saphenous vein grafts.
OBJECTIVES: Fifty percent of human aortocoronary saphenous vein grafts are occluded after 10 years. Intimal hyperplasia is an initial step in graft occlusion and consists of vascular smooth muscle cell proliferation. Phosphatidylinositol 3-kinase and its downstream regulator, the inositol 3-phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome 10), are important regulators of vascular smooth muscle cell proliferation, migration, and cell death. This study tests whether overexpression of PTEN in aortocoronary saphenous vein grafts can reduce intimal hyperplasia. METHODS: Adult dogs underwent aortocoronary bypass grafting to the left anterior descending artery by using the autologous saphenous vein. Saphenous vein grafts were treated with phosphate-buffered saline (n = 9), empty adenovirus (n = 8), or adenovirus encoding for PTEN (n = 8). Arteriography at 30 and 90 days assessed saphenous vein graft patency. A subset received saphenous vein grafts treated with a marker transgene (beta-galactosidase, n = 3), empty adenovirus (n = 4), or adenovirus encoding for PTEN (n = 4) and were killed on postoperative day 3 to confirm expression. Vascular smooth muscle cells were isolated from canine saphenous vein infected with adenovirus encoding for PTEN, and immunoblotting and proliferation assays were performed. RESULTS: Saphenous vein graft transgene expression was confirmed by means of immunohistochemistry, immunoblotting, and polymerase chain reaction. Arteriograms revealed all saphenous vein grafts to be patent. Saphenous vein grafts treated with adenovirus encoding for PTEN demonstrated reduced intimal area compared with those treated with empty adenovirus and phosphate-buffered saline (1.39 +/- 0.11 vs 2.35 +/- 0.3 and 2.57 +/- 0.4 mm 2 , P < .05), and the intima/media ratio was lower in saphenous vein grafts treated with adenovirus encoding for PTEN (0.50 +/- 0.05 vs 1.43 +/- 0.18 and 1.11 +/- 0.14, P < .005). PTEN overexpression in vascular smooth muscle cells inhibited platelet-derived growth factor-induced phosphorylation of Akt, a downstream effector of phosphatidylinositol 3-kinase. PTEN-treated vascular smooth muscle cells demonstrated decreased basal, platelet-derived growth factor-stimulated, and serum-stimulated proliferation. CONCLUSION: This study demonstrates that PTEN overexpression in aortocoronary saphenous vein grafts reduces intimal hyperplasia. The mechanism of this antiproliferative effect in vascular smooth muscle cells is likely due to inhibition of phosphatidylinositol 3-kinase signaling through Akt, with resultant decreases in vascular smooth muscle cell growth and survival. Therefore modulation of the phosphatidylinositol 3-kinase pathway through PTEN overexpression might represent a novel therapy to prevent saphenous vein graft intimal hyperplasia after coronary artery bypass grafting.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Tunica Intima
- Signal Transduction
- Saphenous Vein
- Respiratory System
- Phosphatidylinositol 3-Kinases
- Muscle, Smooth, Vascular
- Hyperplasia
- Graft Occlusion, Vascular
- Dogs
- Coronary Artery Bypass
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Tunica Intima
- Signal Transduction
- Saphenous Vein
- Respiratory System
- Phosphatidylinositol 3-Kinases
- Muscle, Smooth, Vascular
- Hyperplasia
- Graft Occlusion, Vascular
- Dogs
- Coronary Artery Bypass