Active microwave imaging II: 3-D system prototype and image reconstruction from experimental data
A 3-D microwave imaging system prototype and an inverse scattering algorithm are developed to demonstrate the feasibility of 3-D microwave imaging for medical applications such as breast cancer detection with measured data. In this experimental prototype, the transmitting and receiving antennas are placed in a rectangular tub containing a fluid. The microwave scattering data are acquired by mechanically scanning a single transmit antenna and a single receive antenna, thus avoiding the mutual coupling that occurs when an array is used. Careful design and construction of the system has yielded accurate measurements of scattered fields so that even the weak scattered signals at S21= -90dB (or 30 dB below the background fields) can be measured accurately. Measurements are performed in the frequency domain at several discrete frequencies. The collected 3-D experimental data in fluid are processed by a 3-D nonlinear inverse scattering algorithm to unravel the complicated multiple scattering effects and produce high-resolution 3-D digital images of the dielectric constant and conductivity of the imaging domain. Dielectric objects as small as 5 mm in size have been imaged effectively at 1.74 GHz. © 2006 IEEE.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Networking & Telecommunications
- 5103 Classical physics
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Networking & Telecommunications
- 5103 Classical physics
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering