Skip to main content

Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies.

Publication ,  Journal Article
Walker, RA; O'Brien, ET; Pryer, NK; Soboeiro, MF; Voter, WA; Erickson, HP; Salmon, ED
Published in: J Cell Biol
October 1988

We have developed video microscopy methods to visualize the assembly and disassembly of individual microtubules at 33-ms intervals. Porcine brain tubulin, free of microtubule-associated proteins, was assembled onto axoneme fragments at 37 degrees C, and the dynamic behavior of the plus and minus ends of microtubules was analyzed for tubulin concentrations between 7 and 15.5 microM. Elongation and rapid shortening were distinctly different phases. At each end, the elongation phase was characterized by a second order association and a substantial first order dissociation reaction. Association rate constants were 8.9 and 4.3 microM-1 s-1 for the plus and minus ends, respectively; and the corresponding dissociation rate constants were 44 and 23 s-1. For both ends, the rate of tubulin dissociation equaled the rate of tubulin association at 5 microM. The rate of rapid shortening was similar at the two ends (plus = 733 s-1; minus = 915 s-1), and did not vary with tubulin concentration. Transitions between phases were abrupt and stochastic. As the tubulin concentration was increased, catastrophe frequency decreased at both ends, and rescue frequency increased dramatically at the minus end. This resulted in fewer rapid shortening phases at higher tubulin concentrations for both ends and shorter rapid shortening phases at the minus end. At each concentration, the frequency of catastrophe was slightly greater at the plus end, and the frequency of rescue was greater at the minus end. Our data demonstrate that microtubules assembled from pure tubulin undergo dynamic instability over a twofold range of tubulin concentrations, and that the dynamic instability of the plus and minus ends of microtubules can be significantly different. Our analysis indicates that this difference could produce treadmilling, and establishes general limits on the effectiveness of length redistribution as a measure of dynamic instability. Our results are consistent with the existence of a GTP cap during elongation, but are not consistent with existing GTP cap models.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

J Cell Biol

DOI

ISSN

0021-9525

Publication Date

October 1988

Volume

107

Issue

4

Start / End Page

1437 / 1448

Location

United States

Related Subject Headings

  • Video Recording
  • Tubulin
  • Swine
  • Protein Binding
  • Microtubules
  • Kinetics
  • In Vitro Techniques
  • Guanosine Triphosphate
  • Developmental Biology
  • Animals
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Walker, R. A., O’Brien, E. T., Pryer, N. K., Soboeiro, M. F., Voter, W. A., Erickson, H. P., & Salmon, E. D. (1988). Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol, 107(4), 1437–1448. https://doi.org/10.1083/jcb.107.4.1437
Walker, R. A., E. T. O’Brien, N. K. Pryer, M. F. Soboeiro, W. A. Voter, H. P. Erickson, and E. D. Salmon. “Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies.J Cell Biol 107, no. 4 (October 1988): 1437–48. https://doi.org/10.1083/jcb.107.4.1437.
Walker RA, O’Brien ET, Pryer NK, Soboeiro MF, Voter WA, Erickson HP, et al. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol. 1988 Oct;107(4):1437–48.
Walker, R. A., et al. “Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies.J Cell Biol, vol. 107, no. 4, Oct. 1988, pp. 1437–48. Pubmed, doi:10.1083/jcb.107.4.1437.
Walker RA, O’Brien ET, Pryer NK, Soboeiro MF, Voter WA, Erickson HP, Salmon ED. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol. 1988 Oct;107(4):1437–1448.

Published In

J Cell Biol

DOI

ISSN

0021-9525

Publication Date

October 1988

Volume

107

Issue

4

Start / End Page

1437 / 1448

Location

United States

Related Subject Headings

  • Video Recording
  • Tubulin
  • Swine
  • Protein Binding
  • Microtubules
  • Kinetics
  • In Vitro Techniques
  • Guanosine Triphosphate
  • Developmental Biology
  • Animals