
Transition region width of nanowire hetero- and pn-junctions grown using vapor-liquid-solid processes
The transition region width of nanowire heterojunctions and pn-junctions grown using vapor-liquid-solid (VLS) processes has been modeled. With two constituents or dopants I and II, the achievable width or abruptness of the junctions is attributed to the residual I atom/molecule stored in the liquid droplet at the onset of introducing II to grow the junction, and the stored I atom/molecule consumption into the subsequently grown crystal layers. The model yields satisfactory quantitative fits to a set of available Si-Ge junction data. Moreover, the model provides a satisfactory explanation to the relative junction width or abruptness differences between elemental and compound semiconductor junction cases, as well as a guideline for achieving the most desirable pn-junction widths. © 2008 Springer-Verlag.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Physics
- 5104 Condensed matter physics
- 5102 Atomic, molecular and optical physics
- 4016 Materials engineering
- 0912 Materials Engineering
- 0205 Optical Physics
- 0204 Condensed Matter Physics
Citation

Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Physics
- 5104 Condensed matter physics
- 5102 Atomic, molecular and optical physics
- 4016 Materials engineering
- 0912 Materials Engineering
- 0205 Optical Physics
- 0204 Condensed Matter Physics