Skip to main content

Phosphorylation and desensitization of the human beta 1-adrenergic receptor. Involvement of G protein-coupled receptor kinases and cAMP-dependent protein kinase.

Publication ,  Journal Article
Freedman, NJ; Liggett, SB; Drachman, DE; Pei, G; Caron, MG; Lefkowitz, RJ
Published in: J Biol Chem
July 28, 1995

Persistent stimulation of the beta 1-adrenergic receptor (beta 1AR) engenders, within minutes, diminished responsiveness of the beta 1 AR/adenylyl cyclase signal transduction system. This desensitization remains incompletely defined mechanistically, however. We therefore tested the hypothesis that agonist-induced desensitization of the beta 1AR (like that of the related beta 2AR) involves phosphorylation of the receptor itself, by cAMP-dependent protein kinase (PKA) and the beta-adrenergic receptor kinase (beta ARK1) or other G protein-coupled receptor kinases (GRKs). Both Chinese hamster fibroblast and 293 cells demonstrate receptor-specific desensitization of the beta 1 AR within 3-5 min. Both cell types also express beta ARK1 and the associated inhibitory proteins beta-arrestin-1 and beta-arrestin-2, as assessed by immunoblotting. Agonist-induced beta 1AR desensitization in 293 cells correlates with a 2 +/- 0.3-fold increase in phosphorylation of the beta 1AR, determined by immunoprecipitation of the beta 1AR from cells metabolically labeled with 32P(i). This agonist-induced beta 1AR phosphorylation derives approximately equally from PKA and GRK activity, as judged by intact cell studies with kinase inhibitors or dominant negative beta ARK1 (K220R) mutant overexpression. Desensitization, likewise, is reduced by only approximately 50% when PKA is inhibited in the intact cells. Overexpression of rhodopsin kinase, beta ARK1, beta ARK2, or GRK5 significantly increases agonist-induced beta 1AR phosphorylation and concomitantly decreases agonist-stimulated cellular cAMP production (p < 0.05). Furthermore, purified beta ARK1, beta ARK2, and GRK5 all demonstrate agonist-dependent phosphorylation of the beta 1AR. Consistent with a GRK mechanism, receptor-specific desensitization of the beta 1AR was enhanced by overexpression of beta-arrestin-1 and -2 in transfected 293 cells. We conclude that rapid agonist-induced desensitization of the beta 1AR involves phosphorylation of the receptor by both PKA and at least beta ARK1 in intact cells. Like the beta 2AR, the beta 1AR appears to bind either beta-arrestin-1 or beta-arrestin-2 and to react with rhodopsin kinase, beta ARK1, beta ARK2, and GRK5.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

J Biol Chem

DOI

ISSN

0021-9258

Publication Date

July 28, 1995

Volume

270

Issue

30

Start / End Page

17953 / 17961

Location

United States

Related Subject Headings

  • beta-Arrestins
  • beta-Arrestin 2
  • beta-Arrestin 1
  • beta-Adrenergic Receptor Kinases
  • Tetradecanoylphorbol Acetate
  • Receptors, Adrenergic, beta-1
  • Phosphorylation
  • Molecular Sequence Data
  • Gene Expression
  • GTP-Binding Proteins
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Freedman, N. J., Liggett, S. B., Drachman, D. E., Pei, G., Caron, M. G., & Lefkowitz, R. J. (1995). Phosphorylation and desensitization of the human beta 1-adrenergic receptor. Involvement of G protein-coupled receptor kinases and cAMP-dependent protein kinase. J Biol Chem, 270(30), 17953–17961. https://doi.org/10.1074/jbc.270.30.17953
Freedman, N. J., S. B. Liggett, D. E. Drachman, G. Pei, M. G. Caron, and R. J. Lefkowitz. “Phosphorylation and desensitization of the human beta 1-adrenergic receptor. Involvement of G protein-coupled receptor kinases and cAMP-dependent protein kinase.J Biol Chem 270, no. 30 (July 28, 1995): 17953–61. https://doi.org/10.1074/jbc.270.30.17953.
Freedman NJ, Liggett SB, Drachman DE, Pei G, Caron MG, Lefkowitz RJ. Phosphorylation and desensitization of the human beta 1-adrenergic receptor. Involvement of G protein-coupled receptor kinases and cAMP-dependent protein kinase. J Biol Chem. 1995 Jul 28;270(30):17953–61.
Freedman, N. J., et al. “Phosphorylation and desensitization of the human beta 1-adrenergic receptor. Involvement of G protein-coupled receptor kinases and cAMP-dependent protein kinase.J Biol Chem, vol. 270, no. 30, July 1995, pp. 17953–61. Pubmed, doi:10.1074/jbc.270.30.17953.
Freedman NJ, Liggett SB, Drachman DE, Pei G, Caron MG, Lefkowitz RJ. Phosphorylation and desensitization of the human beta 1-adrenergic receptor. Involvement of G protein-coupled receptor kinases and cAMP-dependent protein kinase. J Biol Chem. 1995 Jul 28;270(30):17953–17961.

Published In

J Biol Chem

DOI

ISSN

0021-9258

Publication Date

July 28, 1995

Volume

270

Issue

30

Start / End Page

17953 / 17961

Location

United States

Related Subject Headings

  • beta-Arrestins
  • beta-Arrestin 2
  • beta-Arrestin 1
  • beta-Adrenergic Receptor Kinases
  • Tetradecanoylphorbol Acetate
  • Receptors, Adrenergic, beta-1
  • Phosphorylation
  • Molecular Sequence Data
  • Gene Expression
  • GTP-Binding Proteins