Skip to main content
Journal cover image

In situ cross-linking of elastin-like polypeptide block copolymers for tissue repair.

Publication ,  Journal Article
Lim, DW; Nettles, DL; Setton, LA; Chilkoti, A
Published in: Biomacromolecules
January 2008

Rapid cross-linking of elastin-like polypeptides (ELPs) with hydroxymethylphosphines (HMPs) in aqueous solution is attractive for minimally invasive in vivo implantation of biomaterials and tissue engineering scaffolds. In order to examine the independent effect of the location and number of reactive sites on the chemical cross-linking kinetics of ELPs and the mechanical properties of the resulting hydrogels, we have designed ELP block copolymers comprised of cross-linkable, hydrophobic ELP blocks with periodic Lys residues (A block) and aliphatic, hydrophilic ELP blocks with no cross-linking sites (B block); three different block architectures, A, ABA, and BABA were synthesized in this study. All ELP block copolymers were rapidly cross-linked with HMPs within several minutes under physiological conditions. The inclusion of the un-cross-linked hydrophilic block, its length relative to the cross-linkable hydrophobic block, and the block copolymer architecture all had a significant effect on swelling ratios of the cross-linked hydrogels, their microstructure, and mechanical properties. Fibroblasts embedded in the ELP hydrogels survived the cross-linking process and remained viable for at least 3 days in vitro when the gels were formed from an equimolar ratio of HMPs and Lys residues of ELPs. DNA quantification of the embedded cells indicated that the cell viability within triblock ELP hydrogels was statistically greater than that in the monoblock gels at day 3. These results suggest that the mechanical properties of ELP hydrogels and the microenvironment that they present to cells can be tuned by the design of the block copolymer architecture.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Biomacromolecules

DOI

EISSN

1526-4602

ISSN

1525-7797

Publication Date

January 2008

Volume

9

Issue

1

Start / End Page

222 / 230

Related Subject Headings

  • Tissue Engineering
  • Polymers
  • Polymers
  • Peptides
  • Kinetics
  • Hydrogels
  • Elastin
  • 40 Engineering
  • 34 Chemical sciences
  • 31 Biological sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Lim, D. W., Nettles, D. L., Setton, L. A., & Chilkoti, A. (2008). In situ cross-linking of elastin-like polypeptide block copolymers for tissue repair. Biomacromolecules, 9(1), 222–230. https://doi.org/10.1021/bm7007982
Lim, Dong Woo, Dana L. Nettles, Lori A. Setton, and Ashutosh Chilkoti. “In situ cross-linking of elastin-like polypeptide block copolymers for tissue repair.Biomacromolecules 9, no. 1 (January 2008): 222–30. https://doi.org/10.1021/bm7007982.
Lim DW, Nettles DL, Setton LA, Chilkoti A. In situ cross-linking of elastin-like polypeptide block copolymers for tissue repair. Biomacromolecules. 2008 Jan;9(1):222–30.
Lim, Dong Woo, et al. “In situ cross-linking of elastin-like polypeptide block copolymers for tissue repair.Biomacromolecules, vol. 9, no. 1, Jan. 2008, pp. 222–30. Epmc, doi:10.1021/bm7007982.
Lim DW, Nettles DL, Setton LA, Chilkoti A. In situ cross-linking of elastin-like polypeptide block copolymers for tissue repair. Biomacromolecules. 2008 Jan;9(1):222–230.
Journal cover image

Published In

Biomacromolecules

DOI

EISSN

1526-4602

ISSN

1525-7797

Publication Date

January 2008

Volume

9

Issue

1

Start / End Page

222 / 230

Related Subject Headings

  • Tissue Engineering
  • Polymers
  • Polymers
  • Peptides
  • Kinetics
  • Hydrogels
  • Elastin
  • 40 Engineering
  • 34 Chemical sciences
  • 31 Biological sciences