Skip to main content

Receptor quality control in the endoplasmic reticulum for plant innate immunity.

Publication ,  Journal Article
Saijo, Y; Tintor, N; Lu, X; Rauf, P; Pajerowska-Mukhtar, K; Häweker, H; Dong, X; Robatzek, S; Schulze-Lefert, P
Published in: The EMBO journal
November 2009

Pattern recognition receptors in eukaryotes initiate defence responses on detection of microbe-associated molecular patterns shared by many microbe species. The Leu-rich repeat receptor-like kinases FLS2 and EFR recognize the bacterial epitopes flg22 and elf18, derived from flagellin and elongation factor-Tu, respectively. We describe Arabidopsis 'priority in sweet life' (psl) mutants that show de-repressed anthocyanin accumulation in the presence of elf18. EFR accumulation and signalling, but not of FLS2, are impaired in psl1, psl2, and stt3a plants. PSL1 and PSL2, respectively, encode calreticulin3 (CRT3) and UDP-glucose:glycoprotein glycosyltransferase that act in concert with STT3A-containing oligosaccharyltransferase complex in an N-glycosylation pathway in the endoplasmic reticulum. However, EFR-signalling function is impaired in weak psl1 alleles despite its normal accumulation, thereby uncoupling EFR abundance control from quality control. Furthermore, salicylic acid-induced, but EFR-independent defence is weakened in psl2 and stt3a plants, indicating the existence of another client protein than EFR for this immune response. Our findings suggest a critical and selective function of N-glycosylation for different layers of plant immunity, likely through quality control of membrane-localized regulators.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

The EMBO journal

DOI

EISSN

1460-2075

ISSN

0261-4189

Publication Date

November 2009

Volume

28

Issue

21

Start / End Page

3439 / 3449

Related Subject Headings

  • Receptors, Pattern Recognition
  • Protein Kinases
  • Plant Diseases
  • Immunity, Innate
  • Glycosyltransferases
  • Gene Expression Regulation, Plant
  • Endoplasmic Reticulum
  • Developmental Biology
  • Calreticulin
  • Arabidopsis Proteins
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Saijo, Y., Tintor, N., Lu, X., Rauf, P., Pajerowska-Mukhtar, K., Häweker, H., … Schulze-Lefert, P. (2009). Receptor quality control in the endoplasmic reticulum for plant innate immunity. The EMBO Journal, 28(21), 3439–3449. https://doi.org/10.1038/emboj.2009.263
Saijo, Yusuke, Nico Tintor, Xunli Lu, Philipp Rauf, Karolina Pajerowska-Mukhtar, Heidrun Häweker, Xinnian Dong, Silke Robatzek, and Paul Schulze-Lefert. “Receptor quality control in the endoplasmic reticulum for plant innate immunity.The EMBO Journal 28, no. 21 (November 2009): 3439–49. https://doi.org/10.1038/emboj.2009.263.
Saijo Y, Tintor N, Lu X, Rauf P, Pajerowska-Mukhtar K, Häweker H, et al. Receptor quality control in the endoplasmic reticulum for plant innate immunity. The EMBO journal. 2009 Nov;28(21):3439–49.
Saijo, Yusuke, et al. “Receptor quality control in the endoplasmic reticulum for plant innate immunity.The EMBO Journal, vol. 28, no. 21, Nov. 2009, pp. 3439–49. Epmc, doi:10.1038/emboj.2009.263.
Saijo Y, Tintor N, Lu X, Rauf P, Pajerowska-Mukhtar K, Häweker H, Dong X, Robatzek S, Schulze-Lefert P. Receptor quality control in the endoplasmic reticulum for plant innate immunity. The EMBO journal. 2009 Nov;28(21):3439–3449.

Published In

The EMBO journal

DOI

EISSN

1460-2075

ISSN

0261-4189

Publication Date

November 2009

Volume

28

Issue

21

Start / End Page

3439 / 3449

Related Subject Headings

  • Receptors, Pattern Recognition
  • Protein Kinases
  • Plant Diseases
  • Immunity, Innate
  • Glycosyltransferases
  • Gene Expression Regulation, Plant
  • Endoplasmic Reticulum
  • Developmental Biology
  • Calreticulin
  • Arabidopsis Proteins