Shear viscosity in a perturbative quark-gluon plasma
Among the key features of hot and dense QCD matter produced in ultra-relativistic heavy-ion collisions at RHIC is its very low shear viscosity, indicative of the properties of a near-ideal fluid, and a large opacity demonstrated by jet energy loss measurements. In this work, we utilize a microscopic transport model based on the Boltzmann equation with quark and gluon degrees of freedom and cross sections calculated from perturbative quantum chromodynamics to simulate an ideal quark-gluon plasma in full thermal and chemical equilibrium. We then use the Kubo formalism to calculate the shear viscosity to entropy-density ratio of the medium as a function of temperature and system composition. One of our key results is that the shear viscosity over entropy-density ratio η/s becomes invariant to the chemical composition of the system when plotted as a function of energy-density instead of temperature. © 2011 IOP Publishing Ltd.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Nuclear & Particles Physics
- 5107 Particle and high energy physics
- 5106 Nuclear and plasma physics
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Nuclear & Particles Physics
- 5107 Particle and high energy physics
- 5106 Nuclear and plasma physics
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics