
Achieving accurate radiochromic optical-CT imaging when using a polychromatic light source.
Optical-CT performed with a broad spectrum light source can lead to inaccurate reconstructed attenuation coefficients (and hence dose) due to 'spectral warping' as the beam passes through the dosimeter. Some wavelengths will be attenuated more strongly than others depending on the absorption spectrum of the radiochromic dosimeter. A simulation was run to characterize the error introduced by the spectrum warping phenomena. Simulations of a typical dosimeter and delivered dose (6cm diameter, 2 Gy irradiation) showed reconstructed attenuation coefficients can be in error by >12% when compared to those obtained from a monochromatic scan. A method to correct for these errors is presented and preliminary data suggests that with the correction, polychromatic imaging can yield imaging results equal in accuracy to those of monochromatic imaging. The advantage is that polychromatic imaging may be less sensitive to prominent schlerring artefacts that are often observed in telecentric optical-CT scanning systems with tight bandwidth filters applied.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- 51 Physical sciences
- 0299 Other Physical Sciences
- 0204 Condensed Matter Physics
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
Citation

Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- 51 Physical sciences
- 0299 Other Physical Sciences
- 0204 Condensed Matter Physics
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics