Skip to main content
release_alert
Welcome to the new Scholars 3.0! Read about new features and let us know what you think.
cancel

Evolving approaches to assessing and monitoring patient-ventilator interactions.

Publication ,  Journal Article
Unroe, M; MacIntyre, N
Published in: Curr Opin Crit Care
June 2010

PURPOSE OF REVIEW: Patient-ventilator dyssynchrony (PVD) is prevalent in critically ill patients and causes increased work of breathing, which can lead to ventilatory muscle overload and fatigue as well as impairment in sleep efficiency, both important factors in determining ventilator duration. RECENT FINDINGS: New ways to analyze and communicate information, such as embedded computerized algorithms that are able to calculate a dyssynchrony index and enhanced ventilator graphical displays, may assist the clinician with recognition of PVD. Esophageal pressure monitoring allows the clinician to address trigger, flow and cycle dyssynchrony as well as quantify the incremental work of breathing imposed by PVD. An analysis using relationships in the equation of motion allows for onset and cycling off of breaths that match closer with the patient effort compared with current algorithms. Monitoring diaphragmatic electrical activity permits the accurate assessment of relationships between neural drive and ventilator flow delivery, and can assess the workload of the diaphragm. SUMMARY: Although computerized algorithms and user-friendly graphic displays show promise in minimizing the time to recognition of dyssynchrony, monitoring diaphragmatic electrical activity comes closest to representing the ideal in ventilator monitoring. Further work, however, is needed to demonstrate outcomes benefit to patients and to make this a reliable and user-friendly system for clinicians.

Duke Scholars

Published In

Curr Opin Crit Care

DOI

EISSN

1531-7072

Publication Date

June 2010

Volume

16

Issue

3

Start / End Page

261 / 268

Location

United States

Related Subject Headings

  • Respiratory Mechanics
  • Respiration, Artificial
  • Monitoring, Physiologic
  • Humans
  • Emergency & Critical Care Medicine
  • Diaphragm
  • Critical Illness
  • Algorithms
  • 1103 Clinical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Unroe, M., & MacIntyre, N. (2010). Evolving approaches to assessing and monitoring patient-ventilator interactions. Curr Opin Crit Care, 16(3), 261–268. https://doi.org/10.1097/MCC.0b013e328338661e
Unroe, Mark, and Neil MacIntyre. “Evolving approaches to assessing and monitoring patient-ventilator interactions.Curr Opin Crit Care 16, no. 3 (June 2010): 261–68. https://doi.org/10.1097/MCC.0b013e328338661e.
Unroe M, MacIntyre N. Evolving approaches to assessing and monitoring patient-ventilator interactions. Curr Opin Crit Care. 2010 Jun;16(3):261–8.
Unroe, Mark, and Neil MacIntyre. “Evolving approaches to assessing and monitoring patient-ventilator interactions.Curr Opin Crit Care, vol. 16, no. 3, June 2010, pp. 261–68. Pubmed, doi:10.1097/MCC.0b013e328338661e.
Unroe M, MacIntyre N. Evolving approaches to assessing and monitoring patient-ventilator interactions. Curr Opin Crit Care. 2010 Jun;16(3):261–268.

Published In

Curr Opin Crit Care

DOI

EISSN

1531-7072

Publication Date

June 2010

Volume

16

Issue

3

Start / End Page

261 / 268

Location

United States

Related Subject Headings

  • Respiratory Mechanics
  • Respiration, Artificial
  • Monitoring, Physiologic
  • Humans
  • Emergency & Critical Care Medicine
  • Diaphragm
  • Critical Illness
  • Algorithms
  • 1103 Clinical Sciences