Lung nodule detection in pediatric chest CT: quantitative relationship between image quality and radiologist performance.
PURPOSE: To determine the quantitative relationship between image quality and radiologist performance in detecting small lung nodules in pediatric CT. METHODS: The study included clinical chest CT images of 30 pediatric patients (0-16 years) scanned at tube currents of 55-180 mA. Calibrated noise addition software was used to simulate cases at three nominal mA settings: 70, 35, and 17.5 mA, resulting in quantum noise of 7-32 Hounsfield Unit (HU). Using a validated nodule simulation technique, lung nodules with diameters of 3-5 mm and peak contrasts of 200-500 HU were inserted into the cases, which were then randomized and rated independently by four experienced pediatric radiologists for nodule presence on a continuous scale from 0 (definitely absent) to 100 (definitely present). The receiver operating characteristic (ROC) data were analyzed to quantify the relationship between diagnostic accuracy (area under the ROC curve, AUC) and image quality (the product of nodule peak contrast and displayed diameter to noise ratio, CDNR display). RESULTS: AUC increased rapidly from 0.70 to 0.87 when CDNR display increased from 60 to 130 mm, followed by a slow increase to 0.94 when CDNR display further increased to 257 mm. For the average nodule diameter (4 mm) and contrast (350 HU), AUC decreased from 0.93 to 0.71 with noise increased from 7 to 28 HU. CONCLUSIONS: We quantified the relationship between image quality and the performance of radiologists in detecting lung nodules in pediatric CT. The relationship can guide CT protocol design to achieve the desired diagnostic performance at the lowest radiation dose.]
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Tomography, X-Ray Computed
- Solitary Pulmonary Nodule
- Sensitivity and Specificity
- Reproducibility of Results
- Radiography, Thoracic
- Radiographic Image Interpretation, Computer-Assisted
- Radiographic Image Enhancement
- Professional Competence
- Observer Variation
- Nuclear Medicine & Medical Imaging
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Tomography, X-Ray Computed
- Solitary Pulmonary Nodule
- Sensitivity and Specificity
- Reproducibility of Results
- Radiography, Thoracic
- Radiographic Image Interpretation, Computer-Assisted
- Radiographic Image Enhancement
- Professional Competence
- Observer Variation
- Nuclear Medicine & Medical Imaging