Skip to main content

Development of a noncontact 3-D fluorescence tomography system for small animal in vivo imaging.

Publication ,  Conference
Zhang, X; Badea, C; Jacob, M; Johnson, GA
Published in: Proc SPIE Int Soc Opt Eng
February 16, 2009

Fluorescence imaging is an important tool for tracking molecular-targeting probes in preclinical studies. It offers high sensitivity, but nonetheless low spatial resolution compared to other leading imaging methods such CT and MRI. We demonstrate our methodological development in small animal in vivo whole-body imaging using fluorescence tomography. We have implemented a noncontact fluid-free fluorescence diffuse optical tomography system that uses a raster-scanned continuous-wave diode laser as the light source and an intensified CCD camera as the photodetector. The specimen is positioned on a motorized rotation stage. Laser scanning, data acquisition, and stage rotation are controlled via LabVIEW applications. The forward problem in the heterogeneous medium is based on a normalized Born method, and the sensitivity function is determined using a Monte Carlo method. The inverse problem (image reconstruction) is performed using a regularized iterative algorithm, in which the cost function is defined as a weighted sum of the L-2 norms of the solution image, the residual error, and the image gradient. The relative weights are adjusted by two independent regularization parameters. Our initial tests of this imaging system were performed with an imaging phantom that consists of a translucent plastic cylinder filled with tissue-simulating liquid and two thin-wall glass tubes containing indocyanine green. The reconstruction is compared to the output of a finite element method-based software package NIRFAST and has produced promising results.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Proc SPIE Int Soc Opt Eng

DOI

ISSN

0277-786X

Publication Date

February 16, 2009

Volume

7191

Start / End Page

nihpa106691

Location

United States

Related Subject Headings

  • 5102 Atomic, molecular and optical physics
  • 4009 Electronics, sensors and digital hardware
  • 4006 Communications engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Zhang, X., Badea, C., Jacob, M., & Johnson, G. A. (2009). Development of a noncontact 3-D fluorescence tomography system for small animal in vivo imaging. In Proc SPIE Int Soc Opt Eng (Vol. 7191, p. nihpa106691). United States. https://doi.org/10.1117/12.808199
Zhang, Xiaofeng, Cristian Badea, Mathews Jacob, and G Allan Johnson. “Development of a noncontact 3-D fluorescence tomography system for small animal in vivo imaging.” In Proc SPIE Int Soc Opt Eng, 7191:nihpa106691, 2009. https://doi.org/10.1117/12.808199.
Zhang X, Badea C, Jacob M, Johnson GA. Development of a noncontact 3-D fluorescence tomography system for small animal in vivo imaging. In: Proc SPIE Int Soc Opt Eng. 2009. p. nihpa106691.
Zhang, Xiaofeng, et al. “Development of a noncontact 3-D fluorescence tomography system for small animal in vivo imaging.Proc SPIE Int Soc Opt Eng, vol. 7191, 2009, p. nihpa106691. Pubmed, doi:10.1117/12.808199.
Zhang X, Badea C, Jacob M, Johnson GA. Development of a noncontact 3-D fluorescence tomography system for small animal in vivo imaging. Proc SPIE Int Soc Opt Eng. 2009. p. nihpa106691.

Published In

Proc SPIE Int Soc Opt Eng

DOI

ISSN

0277-786X

Publication Date

February 16, 2009

Volume

7191

Start / End Page

nihpa106691

Location

United States

Related Subject Headings

  • 5102 Atomic, molecular and optical physics
  • 4009 Electronics, sensors and digital hardware
  • 4006 Communications engineering