Carbon dioxide and water vapor exchange in a warm temperate grassland.
Grasslands cover about 40% of the ice-free global terrestrial surface, but their contribution to local and regional water and carbon fluxes and sensitivity to climatic perturbations such as drought remains uncertain. Here, we assess the direction and magnitude of net ecosystem carbon exchange (NEE) and its components, ecosystem carbon assimilation ( A(c)) and ecosystem respiration ( R(E)), in a southeastern United States grassland ecosystem subject to periodic drought and harvest using a combination of eddy-covariance measurements and model calculations. We modeled A(c) and evapotranspiration (ET) using a big-leaf canopy scheme in conjunction with ecophysiological and radiative transfer principles, and applied the model to assess the sensitivity of NEE and ET to soil moisture dynamics and rapid excursions in leaf area index (LAI) following grass harvesting. Model results closely match eddy-covariance flux estimations on daily, and longer, time steps. Both model calculations and eddy-covariance estimates suggest that the grassland became a net source of carbon to the atmosphere immediately following the harvest, but a rapid recovery in LAI maintained a marginal carbon sink during summer. However, when integrated over the year, this grassland ecosystem was a net C source (97 g C m(-2) a(-1)) due to a minor imbalance between large A(c) (-1,202 g C m(-2) a(-1)) and R(E) (1,299 g C m(-2) a(-1)) fluxes. Mild drought conditions during the measurement period resulted in many instances of low soil moisture (theta<0.2 m(3)m(-3)), which influenced A(c) and thereby NEE by decreasing stomatal conductance. For this experiment, low theta had minor impact on R(E). Thus, stomatal limitations to A(c) were the primary reason that this grassland was a net C source. In the absence of soil moisture limitations, model calculations suggest a net C sink of -65 g C m(-2) a(-1) assuming the LAI dynamics and physiological properties are unaltered. These results, and the results of other studies, suggest that perturbations to the hydrologic cycle are key determinants of C cycling in grassland ecosystems.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Water
- Volatilization
- Poaceae
- Environmental Monitoring
- Ecosystem
- Ecology
- Carbon Dioxide
- 3109 Zoology
- 3104 Evolutionary biology
- 3103 Ecology
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Water
- Volatilization
- Poaceae
- Environmental Monitoring
- Ecosystem
- Ecology
- Carbon Dioxide
- 3109 Zoology
- 3104 Evolutionary biology
- 3103 Ecology