Skip to main content

Stability and the continuum limit of the spin-polarized Thomas-Fermi-Dirac-von Weizsäcker model

Publication ,  Journal Article
E, W; Lu, J
Published in: Journal of Mathematical Physics
November 1, 2012

The continuum limit of the spin-polarized Thomas-Fermi-Dirac-von Weizsäcker model in an external magnetic field is studied. An extension of the classical Cauchy-Born rule for crystal lattices is established for the electronic structure under sharp stability conditions on charge density and spin density waves. A Landau-Lifshitz type of micromagnetic energy functional is derived.

Duke Scholars

Published In

Journal of Mathematical Physics

DOI

EISSN

1089-7658

ISSN

0022-2488

Publication Date

November 1, 2012

Volume

53

Issue

11

Publisher

AIP Publishing

Related Subject Headings

  • Mathematical Physics
  • 51 Physical sciences
  • 49 Mathematical sciences
  • 02 Physical Sciences
  • 01 Mathematical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
E, W., & Lu, J. (2012). Stability and the continuum limit of the spin-polarized Thomas-Fermi-Dirac-von Weizsäcker model. Journal of Mathematical Physics, 53(11). https://doi.org/10.1063/1.4755952
E, Weinan, and Jianfeng Lu. “Stability and the continuum limit of the spin-polarized Thomas-Fermi-Dirac-von Weizsäcker model.” Journal of Mathematical Physics 53, no. 11 (November 1, 2012). https://doi.org/10.1063/1.4755952.
E W, Lu J. Stability and the continuum limit of the spin-polarized Thomas-Fermi-Dirac-von Weizsäcker model. Journal of Mathematical Physics. 2012 Nov 1;53(11).
E, Weinan, and Jianfeng Lu. “Stability and the continuum limit of the spin-polarized Thomas-Fermi-Dirac-von Weizsäcker model.” Journal of Mathematical Physics, vol. 53, no. 11, AIP Publishing, Nov. 2012. Crossref, doi:10.1063/1.4755952.
E W, Lu J. Stability and the continuum limit of the spin-polarized Thomas-Fermi-Dirac-von Weizsäcker model. Journal of Mathematical Physics. AIP Publishing; 2012 Nov 1;53(11).

Published In

Journal of Mathematical Physics

DOI

EISSN

1089-7658

ISSN

0022-2488

Publication Date

November 1, 2012

Volume

53

Issue

11

Publisher

AIP Publishing

Related Subject Headings

  • Mathematical Physics
  • 51 Physical sciences
  • 49 Mathematical sciences
  • 02 Physical Sciences
  • 01 Mathematical Sciences