Antimicrobial effects of commercial silver nanoparticles are attenuated in natural streamwater and sediment.
Given the demonstrated antimicrobial properties of silver nanoparticles (AgNPs), and the key role that microorganisms play in performing critical ecosystem functions such as decomposition and nutrient cycling, there is growing concern that AgNP pollution may negatively impact ecosystems. We examined the response of streamwater and sediment microorganisms to commercially available 21 ± 17 nm AgNPs, and compared AgNP impacts to those of dissolved-Ag added as AgNO(3). We show that in streamwater, AgNPs and AgNO(3) decreased respiration in proportion to dissolved-Ag concentrations at the end of the incubation (r(2) = 0.78), while in sediment the only measurable effect of AgNPs was a 14 % decrease in sulfate concentration. This contrasts with the stronger effects of dissolved-Ag additions in both streamwater and sediment. In streamwater, addition of dissolved-Ag at a level equivalent to the lowest AgNP dose led to respiration below detection, a 55 % drop in phosphatase enzyme activity, and a 10-fold increase in phosphate concentration. In sediment, AgNO(3) addition at a level equivalent to the highest AgNP addition led to a 34 % decrease in respiration, a 55 % increase in microbial biomass, and a shift in bacterial community composition. The results of this study suggest that, in similar freshwater environments, the short-term biological impacts of AgNPs on microbes are attenuated by the physical and chemical properties of streamwater and sediment.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Toxicology
- Silver Nitrate
- Silver
- Rivers
- Microbial Consortia
- Metal Nanoparticles
- Geologic Sediments
- Biomass
- 41 Environmental sciences
- 34 Chemical sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Toxicology
- Silver Nitrate
- Silver
- Rivers
- Microbial Consortia
- Metal Nanoparticles
- Geologic Sediments
- Biomass
- 41 Environmental sciences
- 34 Chemical sciences