
Evaluation of empirical Bayes estimators for small numbers of past samples
Publication
, Journal Article
George, SL
Published in: Biometrika
April 1, 1971
SUMMARY: The usual technique for evaluating the performance of empirical Bayes estimators for small numbers, N, of past observations is to compare by Monte Carlo techniques the global risk for the empirical Bayes estimator to the risk obtained for some optimal non-Bayes estimator δ. Here it is shown, under fairly general conditions, that if the prior variance ß2 is small relative to the Bayes risk of δ, and if N≠ 0, then one can always find an estimator that is better than δ, regardless of the form of the prior G or the magnitude of N. © 1971 Oxford University Press.
Duke Scholars
Published In
Biometrika
DOI
ISSN
0006-3444
Publication Date
April 1, 1971
Volume
58
Issue
1
Start / End Page
244
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1403 Econometrics
- 0104 Statistics
- 0103 Numerical and Computational Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
George, S. L. (1971). Evaluation of empirical Bayes estimators for small numbers of past samples. Biometrika, 58(1), 244. https://doi.org/10.1093/biomet/58.1.244
George, S. L. “Evaluation of empirical Bayes estimators for small numbers of past samples.” Biometrika 58, no. 1 (April 1, 1971): 244. https://doi.org/10.1093/biomet/58.1.244.
George SL. Evaluation of empirical Bayes estimators for small numbers of past samples. Biometrika. 1971 Apr 1;58(1):244.
George, S. L. “Evaluation of empirical Bayes estimators for small numbers of past samples.” Biometrika, vol. 58, no. 1, Apr. 1971, p. 244. Scopus, doi:10.1093/biomet/58.1.244.
George SL. Evaluation of empirical Bayes estimators for small numbers of past samples. Biometrika. 1971 Apr 1;58(1):244.

Published In
Biometrika
DOI
ISSN
0006-3444
Publication Date
April 1, 1971
Volume
58
Issue
1
Start / End Page
244
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1403 Econometrics
- 0104 Statistics
- 0103 Numerical and Computational Mathematics