Quasi-likelihood for median regression models
This article proposes quasi-likelihood equations for median regression models. The quasi-likelihood can be used for dependent observations such as repeated measurements or time series data. To construct a quasi-likelihood equation, we need to specify the relation between the median and the dispersion and also specify the dependency of the observations. If a monotone transformation of the original observation has a Laplace distribution, then the quasi-likelihood is the exact likelihood. Under moderate assumptions, the quasi-likelihood estimates are consistent and have asymptotically normal distributions. The estimates are also shown to have minimal asymptotic variance within a certain class of consistent estimates. The proposed method is illustrated using data from a clinical trial. Copyright 1996 Taylor & Francis Group, LLC.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1603 Demography
- 1403 Econometrics
- 0104 Statistics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1603 Demography
- 1403 Econometrics
- 0104 Statistics