Bayesian adaptive sampling for variable selection and model averaging
For the problem of model choice in linear regression, we introduce a Bayesian adaptive sampling algorithm (BAS), that samples models without replacement from the space of models. For problems that permit enumeration of all models, BAS is guaranteed to enumerate the model space in 2p iterations where p is the number of potential variables under consideration. For larger problems where sampling is required, we provide conditions under which BAS provides perfect samples without replacement. When the sampling probabilities in the algorithm are the marginal variable inclusion probabilities, BAS may be viewed as sampling models "near" the median probability model of Barbieri and Berger. As marginal inclusion probabilities are not known in advance, we discuss several strategies to estimate adaptively the marginal inclusion probabilities within BAS. We illustrate the performance of the algorithm using simulated and real data and show that BAS can outperform Markov chain Monte Carlo methods. The algorithm is implemented in the R package BAS available at CRAN. This article has supplementary material online. Copyright © 2011 American Statistical Association.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 1403 Econometrics
- 0104 Statistics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 1403 Econometrics
- 0104 Statistics