Skip to main content

Developmental renin expression in mice with a defective renin-angiotensin system.

Publication ,  Journal Article
Machura, K; Steppan, D; Neubauer, B; Alenina, N; Coffman, TM; Facemire, CS; Hilgers, KF; Eckardt, K-U; Wagner, C; Kurtz, A
Published in: Am J Physiol Renal Physiol
November 2009

During nephrogenesis, renin expression shifts from the vessel walls of interlobular arteries to the terminal portions of afferent arterioles in a wavelike pattern. Since the mechanisms responsible for the developmental deactivation of renin expression are as yet unknown, we hypothesized that the developing renin-angiotensin system (RAS) may downregulate itself via negative feedback to prevent overactivity of renin. To test for a possible role of angiotensin II in the developmental deactivation of renin expression, we studied the development of intrarenal renin expression in mice lacking ANG II AT1a, AT1b, or AT2 receptors and in animals with abolished circulating ANG II due to deletion of the gene for angiotensin I-converting enzyme (ACE). The development of intrarenal renin expression was normal in mice lacking ANG II AT1b or AT2 receptors. In animals lacking both ANG II AT1a and AT1b receptors, ACE, or ANG II AT1a receptors, renin expression was normal early and renin disappeared from mature vessels until development of cortical interlobular and afferent arterioles began. The development of cortical vessels in these genotypes was accompanied by a markedly increased number of renin-expressing cells, many of which were ectopically located and attached in a grapelike fashion to the outer vessel perimeter. Although the number of renin-expressing cells declined during final maturation of the kidneys, the atypical distribution pattern of renin cells was maintained. These findings suggest that ANG II does not play a central role in the typical developmental shift in renin expression from the arcuate vessels to the afferent arterioles. During postnatal maturation of mouse kidneys, interruption of the RAS causes severe hyperplasia of renin cells via a mechanism that centrally involves AT(1a) receptors. However, the distribution pattern of renin cells in adult kidneys with an interrupted RAS does not mimic any normal developmental stage since renin expression is frequently found in cells outside the arteriolar vessel walls in RAS mutants.

Duke Scholars

Published In

Am J Physiol Renal Physiol

DOI

EISSN

1522-1466

Publication Date

November 2009

Volume

297

Issue

5

Start / End Page

F1371 / F1380

Location

United States

Related Subject Headings

  • Urology & Nephrology
  • Reverse Transcriptase Polymerase Chain Reaction
  • Renin-Angiotensin System
  • Renin
  • Receptor, Angiotensin, Type 1
  • RNA, Messenger
  • Peptidyl-Dipeptidase A
  • Muscle, Smooth
  • Mice, Knockout
  • Mice
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Machura, K., Steppan, D., Neubauer, B., Alenina, N., Coffman, T. M., Facemire, C. S., … Kurtz, A. (2009). Developmental renin expression in mice with a defective renin-angiotensin system. Am J Physiol Renal Physiol, 297(5), F1371–F1380. https://doi.org/10.1152/ajprenal.00378.2009
Machura, Katharina, Dominik Steppan, Bjoern Neubauer, Natalia Alenina, Thomas M. Coffman, Carie S. Facemire, Karl F. Hilgers, Kai-Uwe Eckardt, Charlotte Wagner, and Armin Kurtz. “Developmental renin expression in mice with a defective renin-angiotensin system.Am J Physiol Renal Physiol 297, no. 5 (November 2009): F1371–80. https://doi.org/10.1152/ajprenal.00378.2009.
Machura K, Steppan D, Neubauer B, Alenina N, Coffman TM, Facemire CS, et al. Developmental renin expression in mice with a defective renin-angiotensin system. Am J Physiol Renal Physiol. 2009 Nov;297(5):F1371–80.
Machura, Katharina, et al. “Developmental renin expression in mice with a defective renin-angiotensin system.Am J Physiol Renal Physiol, vol. 297, no. 5, Nov. 2009, pp. F1371–80. Pubmed, doi:10.1152/ajprenal.00378.2009.
Machura K, Steppan D, Neubauer B, Alenina N, Coffman TM, Facemire CS, Hilgers KF, Eckardt K-U, Wagner C, Kurtz A. Developmental renin expression in mice with a defective renin-angiotensin system. Am J Physiol Renal Physiol. 2009 Nov;297(5):F1371–F1380.

Published In

Am J Physiol Renal Physiol

DOI

EISSN

1522-1466

Publication Date

November 2009

Volume

297

Issue

5

Start / End Page

F1371 / F1380

Location

United States

Related Subject Headings

  • Urology & Nephrology
  • Reverse Transcriptase Polymerase Chain Reaction
  • Renin-Angiotensin System
  • Renin
  • Receptor, Angiotensin, Type 1
  • RNA, Messenger
  • Peptidyl-Dipeptidase A
  • Muscle, Smooth
  • Mice, Knockout
  • Mice