Skip to main content
Journal cover image

A completely covariant approach to transformation optics

Publication ,  Journal Article
Thompson, RT; Cummer, SA; Frauendiener, J
Published in: Journal of Optics
January 1, 2011

We show that the Plebanski based approach to transformation optics overlooks some subtleties in the electrodynamics of moving dielectrics that restricts its applicability to a certain class of transformations. An alternative, completely covariant, approach is developed that is more generally applicable and provides a clearer picture of transformation optics. © 2011 IOP Publishing Ltd.

Duke Scholars

Published In

Journal of Optics

DOI

EISSN

2040-8986

ISSN

2040-8978

Publication Date

January 1, 2011

Volume

13

Issue

2

Related Subject Headings

  • Optics
  • 5102 Atomic, molecular and optical physics
  • 4008 Electrical engineering
  • 0906 Electrical and Electronic Engineering
  • 0206 Quantum Physics
  • 0205 Optical Physics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Thompson, R. T., Cummer, S. A., & Frauendiener, J. (2011). A completely covariant approach to transformation optics. Journal of Optics, 13(2). https://doi.org/10.1088/2040-8978/13/2/024008
Thompson, R. T., S. A. Cummer, and J. Frauendiener. “A completely covariant approach to transformation optics.” Journal of Optics 13, no. 2 (January 1, 2011). https://doi.org/10.1088/2040-8978/13/2/024008.
Thompson RT, Cummer SA, Frauendiener J. A completely covariant approach to transformation optics. Journal of Optics. 2011 Jan 1;13(2).
Thompson, R. T., et al. “A completely covariant approach to transformation optics.” Journal of Optics, vol. 13, no. 2, Jan. 2011. Scopus, doi:10.1088/2040-8978/13/2/024008.
Thompson RT, Cummer SA, Frauendiener J. A completely covariant approach to transformation optics. Journal of Optics. 2011 Jan 1;13(2).
Journal cover image

Published In

Journal of Optics

DOI

EISSN

2040-8986

ISSN

2040-8978

Publication Date

January 1, 2011

Volume

13

Issue

2

Related Subject Headings

  • Optics
  • 5102 Atomic, molecular and optical physics
  • 4008 Electrical engineering
  • 0906 Electrical and Electronic Engineering
  • 0206 Quantum Physics
  • 0205 Optical Physics