Skip to main content

Targeted plasmid integration into the Human Genome by engineered recombinases

Publication ,  Journal Article
Gersbach, CA; Barbas, CF
Published in: Topics in Current Genetics
January 1, 2013

The targeted integration of transgenes into cellular genomes is central to numerous applications in biotechnology, basic science, and medicine. In recent years, a variety of advances have improved upon conventional methods for site-specific transgene integration. Most of these methods involve nucleases that cleave DNA to activate DNA repair pathways including homologous recombination or integrases that fully catalyze the integration reaction but are limited in their capacity to target new sites in the genome. Recently, zinc-finger recombinases have emerged as a class of engineered enzymes that combines the strengths of both of these previous methods. Zinc-finger recombinases can fully and autonomously catalyze plasmid integration into the genome of mammalian cells without creating free DNA breaks. In addition, they can be engineered to target new genomic recognition sites by exchanging the modular and programmable DNA-binding domain and through directed evolution of the serine recombinase catalytic domain. This chapter reviews the development of the zinc-finger recombinase technology, including discussions of its strengths and weaknesses and the future directions necessary to translate this technology into routine use for transgene integration into cellular genomes. © 2013 Springer Science+Business Media B.V.

Duke Scholars

Published In

Topics in Current Genetics

DOI

EISSN

1610-6970

ISSN

1610-2096

Publication Date

January 1, 2013

Volume

23

Start / End Page

267 / 284

Related Subject Headings

  • Developmental Biology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Gersbach, C. A., & Barbas, C. F. (2013). Targeted plasmid integration into the Human Genome by engineered recombinases. Topics in Current Genetics, 23, 267–284. https://doi.org/10.1007/978-94-007-4531-5_10
Gersbach, C. A., and C. F. Barbas. “Targeted plasmid integration into the Human Genome by engineered recombinases.” Topics in Current Genetics 23 (January 1, 2013): 267–84. https://doi.org/10.1007/978-94-007-4531-5_10.
Gersbach CA, Barbas CF. Targeted plasmid integration into the Human Genome by engineered recombinases. Topics in Current Genetics. 2013 Jan 1;23:267–84.
Gersbach, C. A., and C. F. Barbas. “Targeted plasmid integration into the Human Genome by engineered recombinases.” Topics in Current Genetics, vol. 23, Jan. 2013, pp. 267–84. Scopus, doi:10.1007/978-94-007-4531-5_10.
Gersbach CA, Barbas CF. Targeted plasmid integration into the Human Genome by engineered recombinases. Topics in Current Genetics. 2013 Jan 1;23:267–284.

Published In

Topics in Current Genetics

DOI

EISSN

1610-6970

ISSN

1610-2096

Publication Date

January 1, 2013

Volume

23

Start / End Page

267 / 284

Related Subject Headings

  • Developmental Biology