Skip to main content

Dietary isothiocyanate-induced apoptosis via thiol modification of DNA topoisomerase IIα.

Publication ,  Journal Article
Lin, R-K; Zhou, N; Lyu, YL; Tsai, Y-C; Lu, C-H; Kerrigan, J; Chen, Y-T; Guan, Z; Hsieh, T-S; Liu, LF
Published in: J Biol Chem
September 23, 2011

Studies in animal models have indicated that dietary isothiocyanates (ITCs) exhibit cancer preventive activities through carcinogen detoxification-dependent and -independent mechanisms. The carcinogen detoxification-independent mechanism of cancer prevention by ITCs has been attributed at least in part to their ability to induce apoptosis of transformed (initiated) cells (e.g. through suppression of IκB kinase and nuclear factor κB as well as other proposed mechanisms). In the current studies we show that ITC-induced apoptosis of oncogene-transformed cells involves thiol modification of DNA topoisomerase II (Top2) based on the following observations. 1) siRNA-mediated knockdown of Top2α in both SV40-transformed MEFs and Ras-transformed human mammary epithelial MCF-10A cells resulted in reduced ITC sensitivity. 2) ITCs, like some anticancer drugs and cancer-preventive dietary components, were shown to induce reversible Top2α cleavage complexes in vitro. 3) ITC-induced Top2α cleavage complexes were abolished by co-incubation with excess glutathione. In addition, proteomic analysis revealed that several cysteine residues on human Top2α were covalently modified by benzyl-ITC, suggesting that ITC-induced Top2α cleavage complexes may involve cysteine modification. Interestingly, consistent with the thiol modification mechanism for Top2α cleavage complex induction, the thiol-reactive selenocysteine, but not the non-thiol-reactive selenomethionine, was shown to induce Top2α cleavage complexes. In the aggregate, our results suggest that thiol modification of Top2α may contribute to apoptosis induction in transformed cells by ITCs.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

J Biol Chem

DOI

EISSN

1083-351X

Publication Date

September 23, 2011

Volume

286

Issue

38

Start / End Page

33591 / 33600

Location

United States

Related Subject Headings

  • ras Proteins
  • Sulfhydryl Compounds
  • Signal Transduction
  • RNA, Small Interfering
  • Poly-ADP-Ribose Binding Proteins
  • Nucleosomes
  • Mice
  • Isothiocyanates
  • Humans
  • Histones
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Lin, R.-K., Zhou, N., Lyu, Y. L., Tsai, Y.-C., Lu, C.-H., Kerrigan, J., … Liu, L. F. (2011). Dietary isothiocyanate-induced apoptosis via thiol modification of DNA topoisomerase IIα. J Biol Chem, 286(38), 33591–33600. https://doi.org/10.1074/jbc.M111.258137
Lin, Ren-Kuo, Nai Zhou, Yi Lisa Lyu, Yuan-Chin Tsai, Chang-Hsien Lu, John Kerrigan, Yu-tsung Chen, Ziqiang Guan, Tao-Shih Hsieh, and Leroy F. Liu. “Dietary isothiocyanate-induced apoptosis via thiol modification of DNA topoisomerase IIα.J Biol Chem 286, no. 38 (September 23, 2011): 33591–600. https://doi.org/10.1074/jbc.M111.258137.
Lin R-K, Zhou N, Lyu YL, Tsai Y-C, Lu C-H, Kerrigan J, et al. Dietary isothiocyanate-induced apoptosis via thiol modification of DNA topoisomerase IIα. J Biol Chem. 2011 Sep 23;286(38):33591–600.
Lin, Ren-Kuo, et al. “Dietary isothiocyanate-induced apoptosis via thiol modification of DNA topoisomerase IIα.J Biol Chem, vol. 286, no. 38, Sept. 2011, pp. 33591–600. Pubmed, doi:10.1074/jbc.M111.258137.
Lin R-K, Zhou N, Lyu YL, Tsai Y-C, Lu C-H, Kerrigan J, Chen Y-T, Guan Z, Hsieh T-S, Liu LF. Dietary isothiocyanate-induced apoptosis via thiol modification of DNA topoisomerase IIα. J Biol Chem. 2011 Sep 23;286(38):33591–33600.

Published In

J Biol Chem

DOI

EISSN

1083-351X

Publication Date

September 23, 2011

Volume

286

Issue

38

Start / End Page

33591 / 33600

Location

United States

Related Subject Headings

  • ras Proteins
  • Sulfhydryl Compounds
  • Signal Transduction
  • RNA, Small Interfering
  • Poly-ADP-Ribose Binding Proteins
  • Nucleosomes
  • Mice
  • Isothiocyanates
  • Humans
  • Histones