Skip to main content
Journal cover image

Remodelling of the Vibrio cholerae membrane by incorporation of exogenous fatty acids from host and aquatic environments.

Publication ,  Journal Article
Giles, DK; Hankins, JV; Guan, Z; Trent, MS
Published in: Mol Microbiol
February 2011

The Gram-negative bacteria Vibrio cholerae poses significant public health concerns by causing an acute intestinal infection afflicting millions of people each year. V. cholerae motility, as well as virulence factor expression and outer membrane protein production, has been shown to be affected by bile. The current study examines the effects of bile on V. cholerae phospholipids. Bile exposure caused significant alterations to the phospholipid profile of V. cholerae but not of other enteric pathogens. These changes consisted of a quantitative increase and migratory difference in cardiolipin, decreases in phosphatidylglycerol and phosphatidylethanolamine, and the dramatic appearance of an unknown phospholipid determined to be lyso-phosphatidylethanolamine. Major components of bile were not responsible for the observed changes, but long-chain polyunsaturated fatty acids, which are minor components of bile, were shown to be incorporated into phospholipids of V. cholerae. Although the bile-induced phospholipid profile was independent of the V. cholerae virulence cascade, we identified another relevant environment in which V. cholerae assimilates unique fatty acids into its membrane phospholipids - marine sediment. Our results suggest that Vibrio species possess unique machinery conferring the ability to take up a wider range of exogenous fatty acids than other enteric bacteria.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Mol Microbiol

DOI

EISSN

1365-2958

Publication Date

February 2011

Volume

79

Issue

3

Start / End Page

716 / 728

Location

England

Related Subject Headings

  • Water Microbiology
  • Virulence
  • Vibrio cholerae
  • Spectrometry, Mass, Electrospray Ionization
  • Species Specificity
  • Salmonella enterica
  • Phospholipids
  • Microbiology
  • Lecithins
  • Host-Pathogen Interactions
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Giles, D. K., Hankins, J. V., Guan, Z., & Trent, M. S. (2011). Remodelling of the Vibrio cholerae membrane by incorporation of exogenous fatty acids from host and aquatic environments. Mol Microbiol, 79(3), 716–728. https://doi.org/10.1111/j.1365-2958.2010.07476.x
Giles, David K., Jessica V. Hankins, Ziqiang Guan, and M Stephen Trent. “Remodelling of the Vibrio cholerae membrane by incorporation of exogenous fatty acids from host and aquatic environments.Mol Microbiol 79, no. 3 (February 2011): 716–28. https://doi.org/10.1111/j.1365-2958.2010.07476.x.
Giles, David K., et al. “Remodelling of the Vibrio cholerae membrane by incorporation of exogenous fatty acids from host and aquatic environments.Mol Microbiol, vol. 79, no. 3, Feb. 2011, pp. 716–28. Pubmed, doi:10.1111/j.1365-2958.2010.07476.x.
Giles DK, Hankins JV, Guan Z, Trent MS. Remodelling of the Vibrio cholerae membrane by incorporation of exogenous fatty acids from host and aquatic environments. Mol Microbiol. 2011 Feb;79(3):716–728.
Journal cover image

Published In

Mol Microbiol

DOI

EISSN

1365-2958

Publication Date

February 2011

Volume

79

Issue

3

Start / End Page

716 / 728

Location

England

Related Subject Headings

  • Water Microbiology
  • Virulence
  • Vibrio cholerae
  • Spectrometry, Mass, Electrospray Ionization
  • Species Specificity
  • Salmonella enterica
  • Phospholipids
  • Microbiology
  • Lecithins
  • Host-Pathogen Interactions