Skip to main content

The effects of aerodynamic asymmetric perturbations on forced response of bladed disks

Publication ,  Conference
Miyakozawa, T; Kielb, RE; Hall, KC
Published in: Proceedings of the ASME Turbo Expo
December 1, 2008

Most of the existing mistuning research assumes that the aerodynamic forces on each of the blades are identical except for an interblade phase angle shift. In reality, blades also undergo asymmetric steady and unsteady aerodynamic forces due to manufacturing variations, blending, mis-staggered blades or in-service wear or damage, which cause aerodynamically asymmetric systems. This paper presents the results of sensitivity studies on forced response due to aerodynamic asymmetry perturbations. The focus is only on the asymmetries due to blade motions. Hence, no asymmetric forcing functions are considered. Aerodynamic coupling due to blade motions in the equation of motion is represented using the single family of modes approach. The unsteady aerodynamic forces are computed using CFD methods assuming aerodynamic symmetry. Then, the aerodynamic asymmetry is applied by perturbing the influence coefficient matrix in the physical coordinates such that the matrix is no longer circulant. Therefore, the resulting aerodynamic modal forces in the traveling wave coordinates become a full matrix. These aerodynamic perturbations influence both stiffness and damping while traditional frequency mistuning analysis only perturbs the stiffness. It was found that maximum blade amplitudes are significantly influenced by the perturbation of the imaginary part (damping) of unsteady aerodynamic modal forces. This is contrary to blade frequency mistuning where the stiffness perturbation dominates. Copyright © 2008 by ASME.

Duke Scholars

Published In

Proceedings of the ASME Turbo Expo

DOI

Publication Date

December 1, 2008

Volume

5

Issue

PART B

Start / End Page

779 / 790
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Miyakozawa, T., Kielb, R. E., & Hall, K. C. (2008). The effects of aerodynamic asymmetric perturbations on forced response of bladed disks. In Proceedings of the ASME Turbo Expo (Vol. 5, pp. 779–790). https://doi.org/10.1115/GT2008-50719
Miyakozawa, T., R. E. Kielb, and K. C. Hall. “The effects of aerodynamic asymmetric perturbations on forced response of bladed disks.” In Proceedings of the ASME Turbo Expo, 5:779–90, 2008. https://doi.org/10.1115/GT2008-50719.
Miyakozawa T, Kielb RE, Hall KC. The effects of aerodynamic asymmetric perturbations on forced response of bladed disks. In: Proceedings of the ASME Turbo Expo. 2008. p. 779–90.
Miyakozawa, T., et al. “The effects of aerodynamic asymmetric perturbations on forced response of bladed disks.” Proceedings of the ASME Turbo Expo, vol. 5, no. PART B, 2008, pp. 779–90. Scopus, doi:10.1115/GT2008-50719.
Miyakozawa T, Kielb RE, Hall KC. The effects of aerodynamic asymmetric perturbations on forced response of bladed disks. Proceedings of the ASME Turbo Expo. 2008. p. 779–790.

Published In

Proceedings of the ASME Turbo Expo

DOI

Publication Date

December 1, 2008

Volume

5

Issue

PART B

Start / End Page

779 / 790