Skip to main content
construction release_alert
Scholars@Duke will be undergoing maintenance April 11-15. Some features may be unavailable during this time.
cancel

Elemental spectrum of a mouse obtained via neutron stimulation

Publication ,  Journal Article
Sharma, AC; Tourassi, GD; Kapadia, AJ; Crowell, AS; Kiser, MR; Hutcheson, A; Harrawood, BP; Howell, CR; Floyd, CE
Published in: Progress in Biomedical Optics and Imaging - Proceedings of SPIE
October 15, 2007

Several studies have shown that the concentration of certain elements may be a disease indicator. We are developing a spectroscopic imaging technique, Neutron Stimulated Emission Computed Tomography (NSECT), to non-invasively measure and image elemental concentrations within the body. The region of interest is interrogated via a beam of highenergy neutrons that excite elemental nuclei through inelastic scatter. These excited nuclei then relax by emitting characteristic gamma radiation. Acquiring the gamma energy spectrum in a tomographic geometry allows reconstruction of elemental concentration images. Our previous studies have demonstrated NSECT's ability to obtain spectra and images of known elements and phantoms, as well as, initial interrogations of biological tissue. Here, we describe the results obtained from NSECT interrogation of a fixed mouse specimen. The specimen was interrogated via a 5MeV neutron beam for 9.3 hours in order to ensure reasonable counting statistics. The gamma energy spectrum was obtained using two High-Purity Germanium (HPGe) clover detectors. A background spectrum was obtained by interrogating a specimen container containing 50mL of 0.9% NaCl solution. Several elements of biological interest including 12C, 40Ca, 31P, and 39K were identified with greater then 90% confidence. This interrogation demonstrates the feasibility of NSECT interrogation of small animals. Interrogation with a commercial neutron source that provides higher neutron flux and lower energy (∼2.5MeV) neutrons would reduce scanning time and eliminate background from certain elements.

Duke Scholars

Published In

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

DOI

ISSN

1605-7422

Publication Date

October 15, 2007

Volume

6510

Issue

PART 1
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Sharma, A. C., Tourassi, G. D., Kapadia, A. J., Crowell, A. S., Kiser, M. R., Hutcheson, A., … Floyd, C. E. (2007). Elemental spectrum of a mouse obtained via neutron stimulation. Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 6510(PART 1). https://doi.org/10.1117/12.713731
Sharma, A. C., G. D. Tourassi, A. J. Kapadia, A. S. Crowell, M. R. Kiser, A. Hutcheson, B. P. Harrawood, C. R. Howell, and C. E. Floyd. “Elemental spectrum of a mouse obtained via neutron stimulation.” Progress in Biomedical Optics and Imaging - Proceedings of SPIE 6510, no. PART 1 (October 15, 2007). https://doi.org/10.1117/12.713731.
Sharma AC, Tourassi GD, Kapadia AJ, Crowell AS, Kiser MR, Hutcheson A, et al. Elemental spectrum of a mouse obtained via neutron stimulation. Progress in Biomedical Optics and Imaging - Proceedings of SPIE. 2007 Oct 15;6510(PART 1).
Sharma, A. C., et al. “Elemental spectrum of a mouse obtained via neutron stimulation.” Progress in Biomedical Optics and Imaging - Proceedings of SPIE, vol. 6510, no. PART 1, Oct. 2007. Scopus, doi:10.1117/12.713731.
Sharma AC, Tourassi GD, Kapadia AJ, Crowell AS, Kiser MR, Hutcheson A, Harrawood BP, Howell CR, Floyd CE. Elemental spectrum of a mouse obtained via neutron stimulation. Progress in Biomedical Optics and Imaging - Proceedings of SPIE. 2007 Oct 15;6510(PART 1).

Published In

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

DOI

ISSN

1605-7422

Publication Date

October 15, 2007

Volume

6510

Issue

PART 1