Skip to main content
Journal cover image

Direct evidence that coronary perfusion affects diastolic myocardial mechanical properties in canine heart.

Publication ,  Journal Article
Resar, JR; Judd, RM; Halperin, HR; Chacko, VP; Weiss, RG; Yin, FC
Published in: Cardiovasc Res
March 1993

OBJECTIVE: The effect of coronary perfusion on left ventricular chamber distensibility is only indirect evidence that perfusion alters the mechanical properties of the myocardium. The aim of this study was to demonstrate explicitly the effects of coronary perfusion on these mechanical properties. METHODS: The effects of different levels of coronary perfusion were studied both on in-plane stress-strain relations and on transverse stiffness in an isolated, perfused canine interventricular septal preparation. Additionally, to determine the vascular compartment responsible for the mechanical effects of perfusion on tissue properties, we examined the in-plane stress-strain responses and transverse stiffness after embolisation of the vasculature with 15 microns microspheres. RESULTS: The data show a clear dependence of tissue stress-strain properties on perfusion. The in-plane stress-strain relations were shifted to the left and transverse stiffness increased linearly as septal artery perfusion pressure increased. The dependence of both the in-plane stress-strain relations and transverse stiffness on perfusion was significantly decreased following embolisation. CONCLUSIONS: Myocardial tissue stiffness is directly related to perfusion. The linear relationship between transverse stiffness and perfusion makes it easier to assess the effects of perfusion on tissue stiffness than with in-plane stress-strain relations. Perfusion of capillaries and/or venules is largely responsible for these alterations in myocardial stiffness.

Duke Scholars

Published In

Cardiovasc Res

DOI

ISSN

0008-6363

Publication Date

March 1993

Volume

27

Issue

3

Start / End Page

403 / 410

Location

England

Related Subject Headings

  • Ventricular Function, Left
  • Stress, Mechanical
  • Pressure
  • Myocardium
  • Myocardial Reperfusion
  • In Vitro Techniques
  • Heart Septum
  • Dogs
  • Coronary Vessels
  • Cardiovascular System & Hematology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Resar, J. R., Judd, R. M., Halperin, H. R., Chacko, V. P., Weiss, R. G., & Yin, F. C. (1993). Direct evidence that coronary perfusion affects diastolic myocardial mechanical properties in canine heart. Cardiovasc Res, 27(3), 403–410. https://doi.org/10.1093/cvr/27.3.403
Resar, J. R., R. M. Judd, H. R. Halperin, V. P. Chacko, R. G. Weiss, and F. C. Yin. “Direct evidence that coronary perfusion affects diastolic myocardial mechanical properties in canine heart.Cardiovasc Res 27, no. 3 (March 1993): 403–10. https://doi.org/10.1093/cvr/27.3.403.
Resar JR, Judd RM, Halperin HR, Chacko VP, Weiss RG, Yin FC. Direct evidence that coronary perfusion affects diastolic myocardial mechanical properties in canine heart. Cardiovasc Res. 1993 Mar;27(3):403–10.
Resar, J. R., et al. “Direct evidence that coronary perfusion affects diastolic myocardial mechanical properties in canine heart.Cardiovasc Res, vol. 27, no. 3, Mar. 1993, pp. 403–10. Pubmed, doi:10.1093/cvr/27.3.403.
Resar JR, Judd RM, Halperin HR, Chacko VP, Weiss RG, Yin FC. Direct evidence that coronary perfusion affects diastolic myocardial mechanical properties in canine heart. Cardiovasc Res. 1993 Mar;27(3):403–410.
Journal cover image

Published In

Cardiovasc Res

DOI

ISSN

0008-6363

Publication Date

March 1993

Volume

27

Issue

3

Start / End Page

403 / 410

Location

England

Related Subject Headings

  • Ventricular Function, Left
  • Stress, Mechanical
  • Pressure
  • Myocardium
  • Myocardial Reperfusion
  • In Vitro Techniques
  • Heart Septum
  • Dogs
  • Coronary Vessels
  • Cardiovascular System & Hematology