Teaching old receptors new tricks: biasing seven-transmembrane receptors.
Seven-transmembrane receptors (7TMRs; also known as G protein-coupled receptors) are the largest class of receptors in the human genome and are common targets for therapeutics. Originally identified as mediators of 7TMR desensitization, beta-arrestins (arrestin 2 and arrestin 3) are now recognized as true adaptor proteins that transduce signals to multiple effector pathways. Signalling that is mediated by beta-arrestins has distinct biochemical and functional consequences from those mediated by G proteins, and several biased ligands and receptors have been identified that preferentially signal through either G protein- or beta-arrestin-mediated pathways. These ligands are not only useful tools for investigating the biochemistry of 7TMR signalling, they also have the potential to be developed into new classes of therapeutics.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- beta-Arrestins
- Signal Transduction
- Receptors, G-Protein-Coupled
- Pharmacology & Pharmacy
- Ligands
- Humans
- Genome, Human
- Drug Design
- Drug Delivery Systems
- Arrestins
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- beta-Arrestins
- Signal Transduction
- Receptors, G-Protein-Coupled
- Pharmacology & Pharmacy
- Ligands
- Humans
- Genome, Human
- Drug Design
- Drug Delivery Systems
- Arrestins