β-drenergic receptor overexpression in the developing mouse heart: Evidence for targeted modulation of ion channels
1. We studied the effect of overexpression of the β2-adrenergic receptor (β2-AR) in the heart on ion channel currents in single cells isolated from hearts of fetal and neonatal transgenic and wild-type mice. The β2-AR transgene construct was under the control of the murine α-myosin heavy chain (α-MHC) promoter, and ion channel activity was measured at distinct developmental stages using whole-cell and perforated patch clamp techniques. 2. We found no change in L-type Ca2+ channel current (I(Ca)) density in early embryonic stages (E11-13) of β2-AR transgenic positive (TG+) mice, but significant increases in I(Ca) density in intermediate (E14-16, 152%) and late (E17-19, 173.7%) fetal and neonatal(1 day post partum, 161%) TG+ compared with transgenic negative (TG-) mice. This increase in I(Ca) was accompanied by a negative shift in the peak of the current-voltage relationship in TG+ mice. 3. Transient (< 3 min) or prolonged (16-24 h) exposure of TG- neonatal stage myocytes to 8-Br-cAMP (300 μM) increased I(Ca) density and caused a shift in the current-voltage relationship to a similar extent to that seen in TG+ mice. In TG+ myocytes, 8-Br-cAMP had no effect. Exposure of TG+ cells to Rp-cAMPS reversed both the shift in voltage dependence and reduced the peak current density observed in these myocytes. We concluded from these results that the L-type Ca2+ channel is maximally modulated by cAMP-dependent protein kinase (PKA) in TG+ mice and that the α-MHC promoter is functional in the ventricle as early as embryonic day 14. 4. In contrast, we found that slow delayed rectifier K+ channels were not changed significantly at any of the developmental stages studied by the overexpression of β2-ARs compared with TG- mice. The sensitivity of murine slow delayed rectifier K+ channels to cAMP was tested by both transient and prolonged exposure to 8-Br-cAMP (300 μM), which increased the slow delayed rectifier K+ channel current (I(K,s)) density to a similar extent in both TG- and TG+ neonatal myocytes. In addition, we found that there was no difference in the concentration dependence of the response of I(Ca) and I(K,s) to 8-Br-cAMP. 5. Thus, overexpression of the β2-AR in the heart results in distinct modulation of I(Ca), but not I(K,s), and this is not due to differences in the 8-Br-cAMP sensitivity of the two channels. Instead, these results are consistent with both compartmentalization of β2-AR-controlled cAMP and distinct localization of L-type Ca2+ and slow delayed rectifier K+ channels. This cAMP is targeted preferentially to the L-type Ca2+ channel and is not accessible to the slow delayed rectifier K+ channel.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Physiology
- 42 Health sciences
- 32 Biomedical and clinical sciences
- 31 Biological sciences
- 11 Medical and Health Sciences
- 06 Biological Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Physiology
- 42 Health sciences
- 32 Biomedical and clinical sciences
- 31 Biological sciences
- 11 Medical and Health Sciences
- 06 Biological Sciences