Skip to main content
release_alert
Welcome to the new Scholars 3.0! Read about new features and let us know what you think.
cancel
Journal cover image

Gröbner geometry of vertex decompositions and of flagged tableaux

Publication ,  Journal Article
Knutson, A; Miller, E; Yong, A
Published in: Journal Fur Die Reine Und Angewandte Mathematik
May 1, 2009

We relate a classic algebro-geometric degeneration technique, dating at least to Hodge 1941 (J. London Math. Soc. 16: 245-255), to the notion of vertex decompositions of simplicial complexes. The good case is when the degeneration is reduced, and we call this a geometric vertex decomposition. Our main example in this paper is the family of vexillary matrix Schubert varieties, whose ideals are also known as (one-sided) ladder determinantal ideals. Using a diagonal term order to specify the (Gröbner) degeneration, we show that these have geometric vertex decompositions into simpler varieties of the same type. From this, together with the combinatorics of the pipe dreams of Fomin-Kirillov 1996 (Discr. Math. 153: 123-143), we derive a new formula for the numerators of their multigraded Hilbert series, the double Grothendieck polynomials, in terms of flagged set-valued tableaux. This unifies work of Wachs 1985 (J. Combin. Th. (A) 40: 276-289) on flagged tableaux, and Buch 2002 (Acta. Math. 189: 37-78) on set-valued tableaux, giving geometric meaning to both. This work focuses on diagonal term orders, giving results complementary to those of Knutson-Miller 2005 (Ann. Math. 161: 1245-1318), where it was shown that the generating minors form a Gröbner basis for any antidiagonal term order and any matrix Schubert variety. We show here that under a diagonal term order, the only matrix Schubert varieties for which these minors form Gröbner bases are the vexillary ones, reaching an end toward which the ladder determinantal literature had been building. © 2009 Walter de Gruyter Berlin, New York.

Duke Scholars

Published In

Journal Fur Die Reine Und Angewandte Mathematik

DOI

EISSN

0075-4102

ISSN

0075-4102

Publication Date

May 1, 2009

Issue

630

Start / End Page

1 / 31

Related Subject Headings

  • General Mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Knutson, A., Miller, E., & Yong, A. (2009). Gröbner geometry of vertex decompositions and of flagged tableaux. Journal Fur Die Reine Und Angewandte Mathematik, (630), 1–31. https://doi.org/10.1515/CRELLE.2009.033
Knutson, A., E. Miller, and A. Yong. “Gröbner geometry of vertex decompositions and of flagged tableaux.” Journal Fur Die Reine Und Angewandte Mathematik, no. 630 (May 1, 2009): 1–31. https://doi.org/10.1515/CRELLE.2009.033.
Knutson A, Miller E, Yong A. Gröbner geometry of vertex decompositions and of flagged tableaux. Journal Fur Die Reine Und Angewandte Mathematik. 2009 May 1;(630):1–31.
Knutson, A., et al. “Gröbner geometry of vertex decompositions and of flagged tableaux.” Journal Fur Die Reine Und Angewandte Mathematik, no. 630, May 2009, pp. 1–31. Scopus, doi:10.1515/CRELLE.2009.033.
Knutson A, Miller E, Yong A. Gröbner geometry of vertex decompositions and of flagged tableaux. Journal Fur Die Reine Und Angewandte Mathematik. 2009 May 1;(630):1–31.
Journal cover image

Published In

Journal Fur Die Reine Und Angewandte Mathematik

DOI

EISSN

0075-4102

ISSN

0075-4102

Publication Date

May 1, 2009

Issue

630

Start / End Page

1 / 31

Related Subject Headings

  • General Mathematics
  • 0101 Pure Mathematics